精英家教网 > 高中数学 > 题目详情
15.已知θ为锐角,若sin(θ-$\frac{π}{6}$)=$\frac{3}{5}$,则sinθ=$\frac{3\sqrt{3}+4}{10}$.

分析 先求出cos($θ-\frac{π}{6}$)=$\frac{4}{5}$,再由sinθ=sin[($θ-\frac{π}{6}$)+$\frac{π}{6}$],利用正弦加法定理能求出结果.

解答 解:∵θ为锐角,sin(θ-$\frac{π}{6}$)=$\frac{3}{5}$,
∴-$\frac{π}{6}$<$θ-\frac{π}{6}$<$\frac{π}{3}$,
∴cos($θ-\frac{π}{6}$)=$\sqrt{1-(\frac{3}{5})^{2}}$=$\frac{4}{5}$,
∴sinθ=sin[($θ-\frac{π}{6}$)+$\frac{π}{6}$]
=sin($θ-\frac{π}{6}$)cos$\frac{π}{6}$+cos($θ-\frac{π}{6}$)sin$\frac{π}{6}$
=$\frac{3}{5}×\frac{\sqrt{3}}{2}+\frac{4}{5}×\frac{1}{2}$
=$\frac{3\sqrt{3}+4}{10}$.
故答案为:$\frac{3\sqrt{3}+4}{10}$.

点评 本题考查三角函数值的求法,是中档题,解题时要认真审题,注意同角三角函数关系式和正弦加法定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.有以下四个结论;①$(-\frac{2}{3})^{\frac{2}{3}}$<$(\frac{1}{2})^{\frac{1}{3}}$;②若幂函数f(x)的图象经过点(2,$\sqrt{2}$),则f(x)为偶函数;③函数y=log2(x2-4x+3)的单调增区间为(2,+∞);④函数y=0.5|x|的值域为(0,1].其中正确结论的序号是①④(把所有正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>0)上有一动点M,经过左焦点F且平行于OM的直线交椭圆C于A,B两点(O为坐标原点).(1)若△OAM的面积最大值为1,求a的值;
(2)证明:|FA|•|FB|=$\frac{|OM{|}^{2}}{{a}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若角α与β的终边相同,则α-β的终边落在x的正半轴.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,tanA+tanB+$\sqrt{3}$=$\sqrt{3}$tanAtanB,且sinA•cosA=$\frac{\sqrt{3}}{4}$,则此三角形为(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知关于x的不等式$\sqrt{x}$>ax+$\frac{3}{2}$解集为(4,b),则ab=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的定义域:
(1)y=$\frac{\root{3}{{x}^{2}-1}}{x-6}$.   
(2)y=(x-3)0+$\sqrt{1+x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{bn}的前n项的和为Sn,且b1=1,bn+1=3Sn(n∈N*
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设cn=$\frac{n}{{b}_{n}}$,探究数列{cn}中是否存在最大项?并给以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}的前n和为Sn,且a5=S3=9.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,设数列{bn}前n项和为Tn,求Tn

查看答案和解析>>

同步练习册答案