精英家教网 > 高中数学 > 题目详情
13.变量x,y满足条件$\left\{\begin{array}{l}{x-y+1≤0}\\{y≤1}\\{x≥-1}\end{array}\right.$,则(x-1)2+y2的最小值为2.

分析 由约束条件作出可行域,利用(x-1)2+y2的几何意义,即可行域内的动点与定点M(1,0)距离的平方求得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x-y+1≤0\\ y≤1\\ x≥-1\end{array}\right.$作出可行域如图,
(x-1)2+y2的几何意义为可行域内的动点与定点M(1,0)距离的平方,因为直线与AM垂直,
由图可知,(x-1)2+y2的最小值为:($\sqrt{2}$)2=2.
故答案为:2.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.一位年轻的父亲欲将不会走路的小孩的两条胳膊悬空拎起,结果造成小孩胳膊受伤,试用向量知识加以解释.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了搞好学校的工作,全校各班级一共提出了p(p∈N+)条建议,已知有些班级提出了相同的建议,且任何两个班级都至少有一条建议相同,但没有两个班提出全部相同的建议,求证该校的班级数不多于2p-1个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数y=Asin(wx+j)(A>0,w>0,|j|<$\frac{π}{2}$)的图象如图所示,则A=$\sqrt{3}$,w=2,j=$-\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若sinx-sin($\frac{3π}{2}$-x)=$\sqrt{2}$,则tanx-tan($\frac{3π}{2}$-x)值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=sin(2x+φ)x∈R,φ∈(0,π),若图象关于点($\frac{π}{3}$,0)对称,则φ=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$0<x<\frac{π}{2},f(x)=\frac{1}{sinx}+\frac{2015}{1-sinx}$的最小值为2016+2$\sqrt{2015}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.过点P($\frac{{\sqrt{10}}}{2},0$)作倾斜角为α的直线与曲线x2+2y2=1交于M,N两点,求|PM|•|PN|的最小值及相应的α值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=2x2-4x-3,(0<x<3)的值域为(  )
A.(-3,3)B.(-5,-3)C.(-5,3)D.(-5,+∞)

查看答案和解析>>

同步练习册答案