精英家教网 > 高中数学 > 题目详情
已知实数a,b,c满足a+b+c=1,a2+b2+c2=1,则a+b的取值范围是(  )
A、[-1,1]
B、[-
1
3
,0]
C、[0,
4
3
]
D、[0,2]
考点:柯西不等式
专题:计算题,不等式的解法及应用
分析:利用a+b+c=1,a2+b2+c2=1,可得a+b=1-c,ab=[(a+b)2-(a2+b2)]=c2-c,结合基本不等式,求出c的范围,即可求出a+b的取值范围.
解答: 解:∵a+b+c=1,a2+b2+c2=1,
∴a+b=1-c,ab=
1
2
[(a+b)2-(a2+b2)]=c2-c,
∵ab≤(
a+b
2
)2

∴c2-c≤
(1-c)2
4

∴-
1
3
≤c≤1

∴0≤1-c≤
4
3

∴0≤a+b≤
4
3

故选:C.
点评:本题考查a+b的取值范围,考查基本不等式的运用,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

招聘会上,某公司决定先试用后再聘用小强,该公司的甲、乙两个部门各有4个不同岗位.
(Ⅰ)公司随机安排小强在这两个部门中的3个岗位上进行试用,求小强试用的3个岗位中恰有2个在甲部门的概率;
(Ⅱ)经试用,甲、乙两个部门都愿意聘用他.据估计,小强可能获得的岗位月工资及相应概率如下表所示:
甲部门不同岗位月工资X1(元)2200240026002800
获得相应岗位的概率P10.40.30.20.1
乙部门不同岗位月工资X2(元)2000240028003200
获得相应岗位的概率P20.40.30.20.1
求甲、乙两部门月岗位工资的期望与方差,据此请帮助小强选择一个部门,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x2
+
4
1-x2
(-1<x<1,且x≠0).
(Ⅰ)求f(x)的最小值;
(Ⅱ)若|t+1|≤f(x)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-alnx(a∈R)
(1)讨论f(x)的单调性
(2)设函数Y=f(x)在点A(1,f(1))处的切线为l,若l在点A处穿过函数y=f(x)的图象(即动点在点A附近沿曲线y=f(x)运动,经过点A时,从l的一侧进入另一侧),求a的值
(3)若a>0,函数y=f(x)的图象与直线y=ax有且只有一个公共点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项均为正数,数列{bn},{cn}满足bn=
an+2
an
,cn=anan+12
(1)若数列{an}为等比数列,求证:数列{cn}为等比数列;
(2)若数列{cn}为等比数列,且bn+1≥bn,求证:数列{an}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,其中正视图是等边三角形,俯视图是半圆.现有一只蚂蚁从点A出发沿该几何体的侧面环绕一周回到A点,则蚂蚁所经过路程的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(x+2)4展开式中含x2项的系数等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程
x2
9-k
+
y2
k-1
=1表示焦点在y轴上的椭圆,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点P(2,3),根据下列条件分别求出直线l的方程:
(1)l在x轴、y轴上的截距之和等于0;
(2)l与两条坐标轴在第一象限所围城的三角形面积为16.

查看答案和解析>>

同步练习册答案