(本题满分16分)已知二次函数f (x) = x2 ??ax + a (x∈R)同时满足:①不等式 f (x) ≤ 0的解集有且只有一个元素;②在定义域内存在0 < x1 < x2,使得不等式f (x1) > f (x2)成立.设数列{an}的前 n 项和Sn = f (n).(1)求函数f (x)的表达式;(2)求数列{an}的通项公式;(3)在各项均不为零的数列{cn}中,若ci·ci+1 < 0,则称ci,ci+1为这个数列{cn}一对变号项.令cn = 1 ?? (n为正整数),求数列{cn}的变号项的对数.
(Ⅰ) a = 4, f (x) = x2 ??4x + 4. (Ⅱ) an = (Ⅲ)共有3对变号项
(1)∵f (x) ≤ 0的解集有且只有一个元素,
∴ △ = a2 ??4a = 0 ?? a = 0或a = 4, 1分
当 a = 4 时,函数f (x) = x2 ??4x + 4在(0,2)上递减,
故存在0 < x1 < x2,使得不等式f (x1) > f (x2)成立. 3分
当 a = 0 时,函数f (x) = x2 在(0,+∞)上递增,
故不存在0 < x1 < x2,使得不等式f (x1) > f (x2)成立.
综上:a = 4, f (x) = x2 ??4x + 4. 5分
⑵由⑴可知:Sn = n2 ??4n + 4. 当 n = 1时,a1 = S1 = 1, 6分
当n ≥ 2时,an = Sn ?? Sn??1= (n2 ??4n + 4) ?? [(n ??1)2 ??4(n ??1) + 4] = 2n ?? 5,
∴ an = 10分
⑶法一:由题设cn = , 12分
∵ 当n ≥ 2时,cn + 1 ?? cn = ?? = ,
∴ 当n ≥ 3时,数列{cn}递增, ∵ c3 = ??3 < 0,又由cn = 1 ?? ≥ 0,得 n ≥ 5,
可知 c4·c5 < 0, 即 n ≥ 3时,有且只有一对变号项, 14分
又 ∵ c1 = ??3,c2 = 5,c3 = ??3,即 c1·c2 < 0,c2·c3 < 0,∴ 此处有2对变号项.
综上可得:数列{cn}的变号项有3对. 16分
法二:当i ≥ 2时,ci = 1 ?? = , ∵ ci·ci+1 < 0 ,
∴ · < 0,∴ < i < 或 < i < , ∵ i ≥ 2,i∈N*,∴ i = 2或4,即 c2·c3 < 0,c4·c5 < 0,此处有2对变号项, 14分又 ∵ c1 = ??3,c2 = 5,即 c1·c2 < 0,此处有一对变号项,综上可得:数列{cn}的共有3对变号项 16分
科目:高中数学 来源:2010-2011年江苏省淮安市楚州中学高二上学期期末考试数学试卷 题型:解答题
(本题满分16分)
已知函数,且对任意,有.
(1)求;
(2)已知在区间(0,1)上为单调函数,求实数的取值范围.
(3)讨论函数的零点个数?(提示:)
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省高三10月阶段性测试理科数学试卷(解析版) 题型:解答题
(本题满分16分)已知函数为实常数).
(I)当时,求函数在上的最小值;
(Ⅱ)若方程在区间上有解,求实数的取值范围;
(Ⅲ)证明:
(参考数据:)
查看答案和解析>>
科目:高中数学 来源:2013届江苏省高二下期中理科数学试卷(解析版) 题型:解答题
(本题满分16分) 已知椭圆:的离心率为,分别为椭圆的左、右焦点,若椭圆的焦距为2.
⑴求椭圆的方程;
⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.
查看答案和解析>>
科目:高中数学 来源:2014届江苏省高一上学期期中考试数学试卷(解析版) 题型:解答题
(本题满分16分)已知函数是定义在上的偶函数,且当时,。
(Ⅰ)求及的值;
(Ⅱ)求函数在上的解析式;
(Ⅲ)若关于的方程有四个不同的实数解,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:江苏省2009-2010学年高二第二学期期末考试 题型:解答题
本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4 ;求四边形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com