精英家教网 > 高中数学 > 题目详情
8.已知a∈R,则“a>2”是“a≥1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据集合的包含关系判断即可.

解答 解:∵集合A=(2,+∞)?B=[1,+∞),
∴“a>2”是“a≥1”的充分不必要条件,
故选:A.

点评 本题考查了充分必要条件,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=3x+b的图象不经过第二象限,则b的取值范围为(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,长方体ABCD-A1B1C1D1中,AB=3,BC=4,CC1=5,则沿着长方体表面从A到C1的最短路线长为$\sqrt{74}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(Ⅰ)解不等式$\frac{{x}^{2}-x-6}{x-1}$>0
(Ⅱ)设a>0,b>0,c>0,且a+b+c=1,求证($\frac{1}{a}$-1)($\frac{1}{b}$-1)($\frac{1}{c}$-1)≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=-x2-4mx+1在[2,+∞)上是减函数,则m的取值范围是(  )
A.[-1,+∞)B.(-∞,1)C.(-∞,-1]D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数?(x)=$\frac{1}{x+2}$的定义域是(-∞,-2)∪(-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C的圆心在直线x-2y=0上.
(1)若圆C与y轴的正半轴相切,且该圆截x轴所得弦的长为2$\sqrt{3}$,求圆C的标准方程;
(2)在(1)的条件下,直线l:y=-2x+b与圆C交于两点A,B,若以AB为直径的圆过坐标原点O,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=ex与函数g(x)=-2x+3的图象的交点的横坐标所在的大致区间是(  )
A.(-1,0)B.$({0,\frac{1}{2}})$C.$({\frac{1}{2},1})$D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知空间四点A(2,0,0),B(0,2,1),C(1,1,1),D(-1,m,n).
(1)若AB∥CD,求实数m,n的值;
(2)若m+n=1,且直线AB和CD所成角的余弦值为$\frac{1}{3}$,求实数m的值.

查看答案和解析>>

同步练习册答案