精英家教网 > 高中数学 > 题目详情
上是减函数,则b的取值范围是( )
A.[-1,+∞)
B.(-1,+∞)
C.(-∞,-1]
D.(-∞,-1)
【答案】分析:先对函数进行求导,根据导函数小于0时原函数单调递减即可得到答案.
解答:解:由题意可知,在x∈(-1,+∞)上恒成立,
即b<x(x+2)在x∈(-1,+∞)上恒成立,
由于y=x(x+2)在(-1,+∞)上是增函数且y(-1)=-1,所以b≤-1,
故选C
点评:本题主要考查导数的正负和原函数的增减性的问题.即导数大于0时原函数单调递增,当导数小于0时原函数单调递减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

上是减函数,则b的取值范围是

(    )

         A.                B.                C.                D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省邢台一中高二(上)第二次月考数学试卷(文科)(解析版) 题型:选择题

上是减函数,则b的取值范围是( )
A.[-1,+∞)
B.(-1,+∞)
C.(-∞,-1]
D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省安阳一中高二(上)第二次段考数学试卷(理科)(解析版) 题型:选择题

上是减函数,则b的取值范围是( )
A.[-1,+∞)
B.(-1,+∞)
C.(-∞,-1]
D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源:2009年山东省东营市高考数学一模试卷(文科)(解析版) 题型:选择题

上是减函数,则b的取值范围是( )
A.[-1,+∞)
B.(-1,+∞)
C.(-∞,-1]
D.(-∞,-1)

查看答案和解析>>

同步练习册答案