精英家教网 > 高中数学 > 题目详情
11.四个不同的小球,全部放入编号为1,2,3,4,5的五个盒子中.(结果写成数字)
(1)1号盒子中有球的放法有多少种?
(2)恰有两个空盒的放法有多少种?
(3)恰有三个空盒的放法有多少种?
(4)甲球所放盒的编号不小于乙球所放盒的编号的放法有多少种?

分析 分别利用间接法、直接法,利用排列组合知识,即可得出结论.

解答 解:(1)利用间接法,可得54-44=369种.
(2)恰有两个空盒的放法有C52C31A42A22=360种.
(3)恰有三个空盒的放法有C53(2C43+C42)=140种.
(4)分三类放法. 
第一类:甲球放入1号盒子,则乙球有5种放法(可放入1,2,3,4,5号盒子),其余2球可以随便放入5个盒子,有52种放法.故此类放法的种数是125; 
第二类:甲球放入2号盒子,则乙球有4种放法(可放2,3,4,5号盒子),其余两球随便放,有52种放法.故此类放法的种数是100; 
第三类:甲球放入3号盒子,则乙球有3种放法(放3,4,5号盒子),其余两球随便放,有52种放法.故此类放法的种数是75. 
第四类:甲球放入4号盒子,则乙球有2种放法(放入4,5号盒子),其余两球随便放,有52种放法.故此类放法的种数是50. 
第四类:甲球、乙球放入5号盒子,其余两球随便放,有52种放法.故此类放法的种数是25.
综上,所有放法的总数是 375种.

点评 本题考查排列、组合及简单计数问题,考查分类讨论的思想,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若函数$f(x)=\frac{x}{{({2x+1})({x-a})}}$为奇函数,则a=(  )
A.$\frac{3}{4}$B.1C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|-1<x<4},$B=\left\{{x\left|{-5<x<\frac{3}{2}}\right.}\right\}$,C={x|1-2a<x<2a}.
(1)求A∩B,A∪B;
(2)若集合C=∅,求实数a的取值范围;
(3)若C⊆(A∩B),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={0,2,4,6},B={n∈N|2n<8},则集合A∩B的子集个数为(  )
A.8B.7C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设p:x<3,q:-1<x<3,则¬q是¬p成立的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x2+2x-3≤0},B={x|0≤log4(x+2)≤1},则A∩B=(  )
A.[-3,2]B.[-1,1]C.[-1,2]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x3+x2+mx+1在区间(-1,2)上不是单调函数,则实数m的取值范围是(  )
A.(-∞,-16)∪($\frac{1}{3}$,+∞)B.[-16,$\frac{1}{3}$]C.(-16,$\frac{1}{3}$)D.($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某同学参加学校自主招生3门课程的考试,假设该同学第一门课程取得优秀成绩概率为$\frac{2}{5}$,第二、第三门课程取得优秀成绩的概率分别为p,q(p<q),且不同课程是否取得优秀成绩相互独立,记ξ为该生取得优秀成绩的课程数,其分布列为
ξ0123
p$\frac{6}{125}$xy$\frac{24}{125}$
(1)求该生至少有1门课程取得优秀成绩的概率及求p,q(p<q)的值;
(2)求该生取得优秀成绩课程门数的数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果执行如图的程序框图,且输入n=4,m=3,则输出的p=(  )
A.6B.24C.120D.720

查看答案和解析>>

同步练习册答案