精英家教网 > 高中数学 > 题目详情

【题目】第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.
(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?
(2)每名学生都被随机分配到其中的一个公园,设X,Y分别表示5名学生分配到王城公园和牡丹公园的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列和数学期望E(ξ)

【答案】
(1)解:学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有2 =6种不同的分配方案
(2)解:对于两个公园分配人数分别为:0,5;1,4;2,3;3,2;4,1;5,0.

∴ξ=|X﹣Y|的取值分别为:1,3,5.

∴P(ξ=1)= = = ,P(ξ=3)= = = ,P(ξ=5)= = =

可得ξ分布列:

ξ

1

3

5

P

∴Eξ=1× +2× +3× =


【解析】(1)由题意可得:共有2 种不同的分配方案.(2)对于两个公园分配人数分别为:0,5;1,4;2,3;3,2;4,1;5,0.可得ξ=|X﹣Y|的取值分别为:1,3,5.于是P(ξ=1)= ,P(ξ=3)= ,P(ξ=5)=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.718 28…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e﹣2<a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业想通过做广告来提高销售额,经预测可知本企业产品的广告费x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:

x

2

4

5

6

8

y

30

40

60

50

70

由表中的数据得线性回归方程为 = x+ ,其中 =6.5,由此预测当广告费为7百万元时,销售额为万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=4 x的焦点为F,A、B为抛物线上两点,若 =3 ,O为坐标原点,则△AOB的面积为(
A.8
B.4
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数 ),给出以下四个论断:

的周期为;②在区间上是增函数;③的图象关于点对称;④的图象关于直线对称.以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题(写成“”的形式)__________.(其中用到的论断都用序号表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=xlnx+ax,a∈R.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若对x>1,f(x)>(b+a﹣1)x﹣b恒成立,求整数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn , 若an+1+(﹣1)nan=n,则S40=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1将根式化为分式指数幂的形式

2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在已知函数,(其中,,)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为

(1)求的解析式;

(2)当时,求的值域;

(3)求上的单调区间.

查看答案和解析>>

同步练习册答案