精英家教网 > 高中数学 > 题目详情

已知abc均为实数,a2+b2+c2=1,则ab+bc+ac的最大值为__________,最小值为__________.

1  -


解析:

a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,

∴2(a2+b2+c2)≥2(ab+bc+ca).

又∵a2+b2+c2=1,

ab+bc+ac≤1.

∵(a+b)2+(-c)2≥2(a+b)(-c),

a2+2ab+b2+c2≥-2ac-2bc,

a2+b2+c2≥-2ab-2ac-2bc.

∴-2(ab+ac+bc)≤a2+b2+c2=1.

ab+ac+bc≥-.

综上有-ab+ac+bc≤1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕头市潮阳一中高一(上)期中数学试卷(解析版) 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年湖北百所重点联考文)已知方程的两个不等实根均大于2,则实数a的取值范围为    (    )

    A. B. C.(4,9)  D.(8,9)

查看答案和解析>>

同步练习册答案