【题目】已知为椭圆的左、右焦点,离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)过的直线分别交椭圆于和,且,问是否存在常数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险的基准保费为a元,在下一年续保时,实行费率浮动机制,保费与车辆发生道路交通事故出险的情况相联系,最终保费基准保费(与道路交通事故相联系的浮动比率),具体情况如下表:
交强险浮动因素和浮动费率比率表 | ||
类别 | 浮动因素 | 浮动比率 |
上一个年度未发生有责任道路交通事故 | 下浮 | |
上两个年度未发生有责任道路交通事故 | 下浮 | |
上三个及以上年度未发生有责任道路交通事故 | 下浮 | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | ||
上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故 | 上浮 | |
上一个年度发生有责任道路交通死亡事故 | 上浮 |
为了解某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如下表:
类型 | ||||||
数量 | 20 | 10 | 10 | 38 | 20 | 2 |
若以这100辆该品牌的投保类型的频率代替一辆车投保类型的概率,则随机抽取一辆该品牌车在第四年续保时的费用的期望为( )
A.a元B.元C.元D.元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.
(1)若厂家库房中(视为数量足够多)的每件产品合格的概率为 从中任意取出 3件进行检验,求至少有 件是合格品的概率;
(2)若厂家发给商家 件产品,其中有不合格,按合同规定 商家从这 件产品中任取件,都进行检验,只有 件都合格时才接收这批产品,否则拒收.求该商家可能检验出的不合格产品的件数ξ的分布列,并求该商家拒收这批产品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.
(1)根据直方图估计这个开学季内市场需求量的平均数和众数;
(2)将表示为的函数;
(3)以需求量的频率作为各需求量的概率,求开学季利润不少于4800元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.
(1)根据上述样本数据,将列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?
(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望和方差;
(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象的一条对称轴为,其中为常数,且,给出下述四个结论:
①函数的最小正周期为;
②将函数的图象向左平移所得图象关于原点对称;
③函数在区间,上单调递增;
④函数在区间上有个零点.
其中所有正确结论的编号是( )
A.①②B.①③C.①③④D.①②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市在节日期间进行有奖促销,凡在该超市购物满元的顾客,将获得一次摸奖机会,规则如下:一个袋子装有只形状和大小均相同的玻璃球,其中两只是红色,三只是绿色,顾客从袋子中一次摸出两只球,若两只球都是红色,则奖励元;共两只球都是绿色,则奖励元;若两只球颜色不同,则不奖励.
(1)求一名顾客在一次摸奖活动中获得元的概率;
(2)记为两名顾客参与该摸奖活动获得的奖励总数额,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数的定义域为,如果存在非零常数,对于任意,都有,则称函数是“似周期函数”,非零常数为函数的“似周期”.现有下面四个关于“似周期函数”的命题:
①如果“似周期函数”的“似周期”为,那么它是周期为2的周期函数;
②函数是“似周期函数”;
③如果函数是“似周期函数”,那么“或”.
以上正确结论的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com