精英家教网 > 高中数学 > 题目详情

(本小题满分13分)
袋中有大小相同的三个球,编号分别为1、2和3,从袋中每次取出一个球,若取到的球的编号为偶数,则把该球编号加1(如:取到球的编号为2,改为3)后放回袋中继续取球;若取到球的编号为奇数,则取球停止,用表示所有被取球的编号之和.
(Ⅰ)求的概率分布;
(Ⅱ)求的数学期望与方差.

(1)


1
3
5




(2)

解析试题分析:解:(Ⅰ)在时,表示第一次取到的1号球,;          1分
时,表示第一次取到2号球,第二次取到1号球,或第一次取到3号球,;                    4分
时,表示第一次取到2号球,第二次取到3号球,
.                         6分
的概率分布为                                   7分


1
3
5




(Ⅱ),                10分
.     13分
考点:概率分布列和期望
点评:解决的关键是对于各个取值的概率的准确求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

口袋中有大小、质地均相同的7个球,3个红球,4个黑球,现在从中任取3个球。
(1)求取出的球颜色相同的概率;
(2)若取出的红球数设为,求随机变量的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

张师傅驾车从公司开往火车站,途径4个公交站,这四个公交站将公司到火车站
分成5个路段,每个路段的驾车时间都是3分钟,如果遇到红灯要停留1分钟,假设他在各
交通岗是否遇到红灯是相互独立的,并且概率都是
(1)求张师傅此行时间不少于16分钟的概率
(2)记张师傅此行所需时间为Y分钟,求Y的分布列和均值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球中恰有1个红球的概率;
(Ⅱ)设“从甲盒内取出的2个球恰有1个为黑球”为事件A;“从乙盒内取出的2个球都是黑球”为事件B,求在事件A发生的条件下,事件B发生的概率;
(Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一车间生产A, B, C三种样式的LED节能灯,每种样式均有10W和30W两种型号,某天的产量如右表(单位:个)。按样式分层抽样的方法在这个月生产的灯泡中抽取100个,其中有A样式灯泡25个.

型号
A样式
B样式
C样式
10W
2000
z
3000
30W
3000
4500
5000
 
(1)求z的值;
(2)用分层抽样的方法在A样式灯泡中抽取一个容量为5的样本,从这个样本中任取2个灯泡,求至少有1个10W的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.
(Ⅰ)求X的分布列;
(Ⅱ)求X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)某校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题连续两次答错的概率为,(已知甲回答每个问题的正确率相同,并且相互之间没有影响。)(I)求甲选手回答一个问题的正确率;(Ⅱ)求选手甲可进入决赛的概率;(Ⅲ)设选手甲在初赛中答题的个数为,试写出的分布列,并求的数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)文科班某同学参加广东省学业水平测试,物理、化学、生物获得等级A和获得等级不是A的机会相等,物理、化学、生物获得等级A的事件分别记为,物理、化学、生物获得等级不是A的事件分别记为.
(I)试列举该同学这次水平测试中物理、化学、生物成绩是否为A的所有可能结果(如三科成绩均为A记为();
(II)求该同学参加这次水平测试获得两个A的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知集合,集合
集合
(1)列举出所有可能的结果;
(2)从集合中任取一个元素,求“”的概率
(3)从集合中任取一个元素,求“”的概率.

查看答案和解析>>

同步练习册答案