精英家教网 > 高中数学 > 题目详情
已知a,b是夹角为60°的两单位向量,而ca,cb,且|c|=,x=2a-b+c,y=3b-a-c,则cos〈x,y〉=___________.

  因为|x|==6,

|y|=(,

x·y=(2a-b+c)·(3b-a-c)=,

所以cos〈x,y〉=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①如果命题“?p”与命题“p或q”都是真命题,那么命题q一定是真命题;
②已知向量
a
b
满足|
a
|=1,|
b
|=4
,且
a
b
=2
,则
a
b
的夹角为
π
6

③若函数f(x+1)是奇函数,f(x-1)是偶函数,且f(0)=2,则f(2012)=2;
④已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数,函数g(x)=log4(a•2x-
4
3
a)
,若函数f(x)的图象与函数g(x)的图象有且只有一个公共点,则实数a的取值范围是(1,+∞).
其中正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①若|x-lgx|<x+|lgx|成立,则x>1;
②已知|
a
| =|
b
| =2
a
b
的夹角为
π
3
,则
b
a
上的投影为1;
③若P=a+
1
a
+2(a>0),q=(
1
2
)
x2-2
(x∈R)
,则p>q;
④已知f(x)=asinx-bcosx在x=
π
6
处取得最大值2,则a=1,b=
3

其中正确命题的序号是
①②
①②
.(把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
c
满足|
a|
=2
,|
b
|=|
a
-
b
|,
a
b
的夹角为
π
6
(
a
-
c
)•(
b
-
c
)=0
.若对每一个确定的
b
|
c
|
的最大值和最小值分别为m,n,则对任何的
b
,m-n的最小值是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列四个命题:
①如果命题“?p”与命题“p或q”都是真命题,那么命题q一定是真命题;
②已知向量
a
b
满足|
a
|=1,|
b
|=4
,且
a
b
=2
,则
a
b
的夹角为
π
6

③若函数f(x+1)是奇函数,f(x-1)是偶函数,且f(0)=2,则f(2012)=2;
④已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数,函数g(x)=log4(a•2x-
4
3
a)
,若函数f(x)的图象与函数g(x)的图象有且只有一个公共点,则实数a的取值范围是(1,+∞).
其中正确命题的序号为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量
a
b
c
满足|
a|
=2
,|
b
|=|
a
-
b
|,
a
b
的夹角为
π
6
(
a
-
c
)•(
b
-
c
)=0
.若对每一个确定的
b
|
c
|
的最大值和最小值分别为m,n,则对任何的
b
,m-n的最小值是(  )
A.
1
4
B.
1
2
C.2D.1

查看答案和解析>>

同步练习册答案