精英家教网 > 高中数学 > 题目详情
f(x)=
13
x3-x2+ax-5
在区间[-1,2]上有反函数,则a的范围是
 
分析:欲使原函数在区间[-1,2]上有反函数,只须其在区间[-1,2]上是单调函数即可,利用导数研究,只须其导数在区间[-1,2]上恒为非正或非负即可,最后利用二次函数的图象与性质即得a的范围.
解答:解:因为f(x)=
1
3
x3-x2+ax-5
在区间[-1,2]上有反函数,
所以f(x)在该区间[-1,2]上单调,
则f'(x)=x2-2x+a≥0在[-1,2]上恒成立,
得a≥1
或在f'(x)=x2-2x+a≤0上恒成立,
得a≤-3.
故答案为:(-∞,-3]∪[1,+∞).
点评:本小题主要考查利用导数研究函数的单调性、函数单调性的应用、反函数、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3-ax2+(a2-1)x+b(a,b∈R)

(1)若x=1为f(x)的极值点,求a的值;
(2)若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,
(i)求f(x)在区间[-2,4]上的最大值;
(ii)求函数G(x)=[f'(x)+(m+2)x+m]e-x(m∈R)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3-x2+ax-a
,(a∈R)在x=-1时取得极值,求a的值及f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算 f(x)=
1
3
x3-
3
2
x2+2x+1
x∈[0,
3
2
]
时函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+
1
2
ax2+bx
,a,b∈R,f'(x)是函数f(x)的导函数.
(I)若b=a-1,求函数f(x)的单调递减区间;
(II)若-1≤a≤1,-1≤b≤1,求方程f'(x)=0有实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}中a1=2,点(
an
an+1)
在函数f(x)=
1
3
x3+x
的导函数y=f'(x)图象上,数列{bn}中,点(bn,Sn)在直线y=-
1
2
x+3
上,其中Sn是数列{bn}的前n项和(n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{cn}满足cn=
1
2
anbn
,且数列{cn}的前n项和Tn,求证:Tn
15
4

查看答案和解析>>

同步练习册答案