精英家教网 > 高中数学 > 题目详情
10.给出下列两个集合间的对应:
(1)A={你班的同学},B={体重},f:每个同学对应自己的体重;
(2)M={1,2,3,4},N={2,4,6,8},f:n=2m;
(3)X=R,Y={非负实数},f:y=x3
其中是映射的有2个,是函数的有1个.

分析 根据映射和函数的概念,逐一分析3个对应关系,是否满足映射和函数的概念,综合可得答案.

解答 解:(1)A={你班的同学},B={体重},f:每个同学对应自己的体重,任意一个A中元素,在B中均有唯一的元素与之对应,满足映射的概念;但不满足函数的概念;
(2)M={1,2,3,4},N={2,4,6,8},f:n=2m;任意一个M中元素,在N中均有唯一的元素与之对应,满足映射的概念;也满足函数的概念
(3)X=R,Y={非负实数},f:y=x3.任意一个X中元素,例如x=-1,在Y中均没有的元素与之对应,不满足映射的概念;也不满足函数的概念
综上所述:其中是映射的有2个,是函数的有1个,
故答案为:2,1.

点评 本题考查了映射和函数的概念,关键是对映射和函数概念的理解,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在某城市中,M,N两地之间有整齐的方格形道路网,A1、A2、A3、A4是道路网中位于一条对角线上的4个交汇处,今甲由道路网M处出发随机地选择一条沿街的最短路径到达N处.
(Ⅰ)求甲由M处到达N处的不同走法种数;
(Ⅱ)求甲经过A2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知定义域为R的函数$f(x)=\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是奇函数.
(1)求函数f(x)的解析式;
(2)试判断函数f(x)的单调性,并加以证明;
(3)若对于任意实数t,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“|x|≥0(x∈R)”的否定是(  )
A.“?x∈R,使|x|<0”B.“?x∈R,使|x|<0”C.“?x∉R,使|x|<0”D.“?x∈R,使|x|≤0”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,∠A=60°,AC=1,△ABC的面积为$\frac{\sqrt{3}}{2}$,则BC的长为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.从甲、乙、丙、丁、戊五人中任选三人作代表,这五人入选的机会均等,则甲或乙被选中的概率是(  )
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A、B两点.已知A、B的横坐标分别为x1,x2
(Ⅰ)若x1=$\frac{{3\sqrt{10}}}{10}$,x2=$\frac{{7\sqrt{2}}}{10}$,求2α+β的值;
(Ⅱ)若x1=$\frac{3}{5}$,若角-β终边与单位圆交于C点,且$\overrightarrow{OA}•\overrightarrow{OC}$=0,求sin(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.等差数列{an}中,a2=6,2a3=a1+a4+3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{{3^{n-1}}}}{n}•{a_n}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}的前n项和为Sn,且(n+1)Sn=(n-1)an+1+2n+2,n∈N*,a2=8.
(1)求a1,a3
(2)求数列{an}的通项公式an
(3)设bn=$\frac{{n}^{2}}{{a}_{n}}$-$\frac{{2}^{2n+5}}{{a}_{n+1}{a}_{n+2}}$,数列{bn}的前n和为Tn
①求Tn
②求正整数k,使得对任意n∈N*,均有Tn≤TK

查看答案和解析>>

同步练习册答案