精英家教网 > 高中数学 > 题目详情
16.如图是一个几何体的三视图,其中正视图和侧视图是高为2,底边长为$2\sqrt{2}$的等腰三角形,俯视图是边长为2的正方形,则该几何体的外接球的体积是4$\sqrt{3}$π.

分析 由三视图可知:该几何体为四棱锥.CD=AB=2$\sqrt{2}$,AB与CD之间的距离为2.分别取AB,CD的中点E,F,取EF的中点O,为该几何体的外接球的球心.

解答 解:由三视图可知:该几何体为四棱锥.CD=AB=2$\sqrt{2}$,AB与CD之间的距离为2.
分别取AB,CD的中点E,F,取EF的中点O,为该几何体的外接球的球心.
则半径R=$\sqrt{(\sqrt{2})^{2}+{1}^{2}}$=$\sqrt{3}$.
∴该几何体的外接球的体积V=$\frac{4}{3}π×(\sqrt{3})^{3}$=4$\sqrt{3}$π.
故答案为:$4\sqrt{3}π$.

点评 本题考查了四棱锥的三视图、球的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.甲乙两家快递公司,其快递员的日工资方案如下:甲公司底薪70元,每单抽成2;乙公式无底薪,40单内(含40单)的部分每单抽成4元,超出40单的部分每单抽成6元,假设同一公司快递员一天送快递单数相同,现从两家公司各随机抽取一名快递员,并分别记录其100天的送快递单数,得到如下的频率表:
甲公司快递员送快递单数频数表
送餐单数 3839404142
天数2040201010
乙公司快递员送快递单数频数表 
送餐单数 3839404142
天数1020204010
(1)记乙公司快递员日工资为X(单位:元),求X的分布列和数学期望;
(2)小明到甲乙两家公司中的一家应聘快递员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C的极坐标方程是ρ=2$\sqrt{2}$•sin(θ+$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(提示:sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ$\overline{+}$ sinαsinβ
(1)求圆与直线的直角坐标方程.
(2)判断直线l和圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,如果输入的a,b分别为56,140,则输出的a=(  )
A.0B.7C.14D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z满足1+i=(1-i)2z,则z的共轭复数在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sinx(cosx-sinx)+$\frac{1}{2}$
(Ⅰ)求f(x)的最小正周期;
(II)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-1+aln(1-x),a∈R.
(Ⅰ)若函数f(x)为定义域上的单调函数,求实数a的取值范围;
(Ⅱ)若函数f(x)存在两个极值点x1,x2,且x1<x2.证明:$\frac{f({x}_{1})}{{x}_{2}}$>$\frac{f({x}_{2})}{{x}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图是求12+22+32+…+1002的程序框图,则图中的①②分别是(  )
A.①S=S+i ②i=i+1B.①S=S+i2 ②i=i+1C.①i=i+1 ②S=S+iD.①i=i+1 ②S=S+i2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个几何体的三视图如图所示(单位:m),则该几何体的体积为15m3

查看答案和解析>>

同步练习册答案