精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=x2-ax,(a>0),$g(x)=sinxsin({x+\frac{π}{6}})-\frac{{\sqrt{3}}}{4}$,命题p:an=f(n)是递增数列,命题q:g(x)在(a,π)上有且仅有2条对称轴.
①求g(x)的周期和单调递增区间;
②若p∧q为真,求a的取值范围.

分析 ①通过恒等变换整理g(x)的表达式,求出周期和单调区间即可;②分别求出p,q为真时的a的范围,取交集即可.

解答 解:①g(x)=sinx(sinxcos$\frac{π}{6}$+cosxsin$\frac{π}{6}$)-$\frac{\sqrt{3}}{4}$
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$sinxcosx-$\frac{\sqrt{3}}{4}$
=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{4}$cos2x
=$\frac{1}{2}$sin(2x-$\frac{π}{3}$),
∴T=π,由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,
∴g(x)的单调递增区间[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈z,
②p∧q为真∴p,q为真,
p:an+1-an=(n+1)2-a(n+1)-n2+an=2n+1-a>0恒成立,
∴0<a<3,
q:g(x)的对称轴方程$2x-\frac{π}{3}=kπ+\frac{π}{2}⇒x=\frac{1}{2}kπ+\frac{5}{12}π$,
g(x)在(a,π)上有2条对称轴,
画数轴可得$a∈[{-\frac{π}{12},\frac{5π}{12}})$,
∴$a∈({0,\frac{5π}{12}})$.

点评 本题考查了三角函数问题,考查函数恒成立问题,考查复合命题的判断,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.双曲线${y^2}-\frac{x^2}{2}=1$的焦距是2$\sqrt{3}$,渐近线方程是$y=±\frac{\sqrt{2}}{2}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\frac{1+tanα}{1-tanα}=\frac{4}{3}$,则$tan(α+\frac{π}{4})$=$\frac{4}{3}$,tanα=$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\overrightarrow{a}=(1,x)$和$\overrightarrow{b}=(x+2,-2)$,若$\overrightarrow{a}⊥\overrightarrow{b}$,则|$\overrightarrow{a}+\overrightarrow{b}$|=(  )
A.5B.8C.$\sqrt{10}$D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(1,2),B(4,3),向量$\overrightarrow{AC}=({-2,-2})$,则向量$\overrightarrow{BC}$=(  )
A.(-5,-3)B.(5,3)C.(1,-1)D.(-1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)满足?x∈R,f(x)=f(2-x)且f(x)在区间[1,+∞)上单调递增,则满足$f(2x)<f(\frac{1}{3})$的x的取值范围是(  )
A.$(\frac{1}{5},\frac{5}{6})$B.$[\frac{1}{5},\frac{5}{6})$C.$(\frac{1}{6},\frac{5}{6})$D.$[\frac{1}{6},\frac{5}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中为偶函数的是(  )
A.y=$\frac{1}{x}$B.y=lg|x|C.y=(x-1)2D.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“x=0”是“sinx=-x”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱锥ABCD中,点M,N分别是△ABC和△ACD的重心,求证:MN∥BD.

查看答案和解析>>

同步练习册答案