精英家教网 > 高中数学 > 题目详情

【题目】1是由矩形ADEBRtABC和菱形BFGC组成的一个平面图形,其中AB=1BE=BF=2,∠FBC=60°,将其沿ABBC折起使得BEBF重合,连结DG,如图2.

1)证明:图2中的ACGD四点共面,且平面ABC⊥平面BCGE

2)求图2中的二面角BCGA的大小.

【答案】(1)见详解;(2) .

【解析】

(1)因为折纸和粘合不改变矩形和菱形内部的夹角,所以依然成立,又因粘在一起,所以得证.因为是平面垂线,所以易证.(2)在图中找到对应的平面角,再求此平面角即可.于是考虑关于的垂线,发现此垂足与的连线也垂直于.按照此思路即证.

(1)证:,又因为粘在一起.

ACGD四点共面.

.

平面BCGE平面ABC平面ABC平面BCGE,得证.

(2)B延长线于H,连结AH,因为AB平面BCGE,所以

而又,故平面,所以.又因为所以是二面角的平面角,而在,又因为,所以.

而在,,即二面角的度数为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.

(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?

(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,为正三角形,平面平面的中点,

1)求证:

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)解关于的不等式:

2)当时,过点是否存在函数图象的切线?若存在,有多少条?若不存在,说明理由;

3)若是使恒成立的最小值,试比较的大小(.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线交于两点,过分别作的切线,两切线的交点为,直线交于两点

1)证明:点始终在直线上且

2)求四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,离心率,其右焦点为.

1)求椭圆的方程;

2)过作夹角为的两条直线分别交椭圆,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足=1,则等于(

A.-B.C.-D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量满足:||2||1

1)若(2)=1,求的值;

2)设向量的夹角为θ.若存在tR,使得,求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数,对任意,都有成立,若函数的图象关于直线对称,则

A.B.C.D.

查看答案和解析>>

同步练习册答案