精英家教网 > 高中数学 > 题目详情
8.已知平面向量$\overrightarrow a$,$\overrightarrow b$,$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,$\overrightarrow a•\overrightarrow b=1$,则向量$\overrightarrow a$,$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

分析 由条件利用两个向量的数量积的定义,求得向量$\overrightarrow a$,$\overrightarrow b$的夹角的余弦值,可得向量$\overrightarrow a$,$\overrightarrow b$的夹角.

解答 解:设向量$\overrightarrow a$,$\overrightarrow b$的夹角为θ,
∵$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,$\overrightarrow a•\overrightarrow b=1$,
∴1×$\sqrt{2}$×cosθ=1,
∴cosθ=$\frac{\sqrt{2}}{2}$,
结合θ∈[0,π],可得θ=$\frac{π}{4}$,
故选:C.

点评 本题主要考查两个向量的数量积的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数f(x)=x2+2x+3在自变量x从1变化到3的过程中的平均变化率是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.小明同学计划两次购买同一种笔芯(两次笔芯的单价不同),有两种方案:第一种方法是每次购买笔芯数量一定:第二种方法是每次购买笔芯所花钱数一定.则哪种购买方式比较经济(  )
A.第一种B.第二种C.两种一样D.无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.写出命题“?x∈(0,+∞),lnx=x-1”的否定:?x0∈(0,+∞),使lnx0≠x0-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线l过点A(1,1),且l在y轴上的截距的取值范围为(0,2),则直线l的斜率的取值范围为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i为虚数单位,复数z满足$3z+\overline z=\frac{4}{1-i}$,则z=(  )
A.$\frac{1}{4}+\frac{1}{2}i$B.$\frac{1}{2}+i$C.$\frac{1}{4}-\frac{1}{2}i$D.$\frac{1}{2}-i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合U={0,1,2,3,4,5},A={0,1,3},B={1,2,5},则(∁UA)∩B=(  )
A.{2,4,5}B.{1,2,4,5}C.{2,5}D.{0,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.为了倡导人民群众健康的生活方式,某社区服务中心通过网站对岁的社区居民随机抽取n人进行了调查,得到如下各年龄段人数频率分布直方图,若该公司决定在各年龄段用分层抽样抽取50名观众进行奖励,则年龄段[50,60]的获奖人数为(  )
A.10B.12C.15D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“a≤0”是“函数f(x)=|x(ax+1)|在区间(-∞,0)内单调递减”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案