分析 设A、B点坐标分别为(x1,y1),(x2,y2),由直线垂直的性质得x1x2+y1y2=0,由$\left\{\begin{array}{l}{x+2y-3=0}\\{{x}^{2}+{y}^{2}+x-2cy+c=0}\end{array}\right.$,得5y2-(2c+14)y+c+12=0,由此利用韦达定理能求出实数c的值.
解答 解:设A、B点坐标分别为(x1,y1),(x2,y2),
由OA⊥OB,得kOA•kOB=-1,即$\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}$=-1,
∴x1x2+y1y2=0,①
由$\left\{\begin{array}{l}{x+2y-3=0}\\{{x}^{2}+{y}^{2}+x-2cy+c=0}\end{array}\right.$,
得5y2-(2c+14)y+c+12=0,
则${y}_{1}+{y}_{2}=\frac{1}{5}(2c+14)y+c+12=0$,②
又x1x2=(3-2y1)(3-2y2)=9-6(y1+y2)+4y1y2,
代入①,得9-6(y1+y2)+5y1y2=0,③
联立②③,解得c=3.
∴实数c的值为3.
点评 本题考查直线中参数值的求法,是中档题,解题时要认真审题,注意直线垂直的性质、韦达定理的合理运用.
科目:高中数学 来源: 题型:选择题
A. | a=7,b=14,a=30° | B. | a=17,b=8,a=135° | C. | a=3,b=4,a=27° | D. | a=10,b=7,a=60° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | $-\sqrt{3}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com