精英家教网 > 高中数学 > 题目详情
6.已知直线x+2y-3=0与圆x2+y2+x-2cy+c=0的两个交点为A,B,O为坐标原点,且OA⊥OB,求实数c的值.

分析 设A、B点坐标分别为(x1,y1),(x2,y2),由直线垂直的性质得x1x2+y1y2=0,由$\left\{\begin{array}{l}{x+2y-3=0}\\{{x}^{2}+{y}^{2}+x-2cy+c=0}\end{array}\right.$,得5y2-(2c+14)y+c+12=0,由此利用韦达定理能求出实数c的值.

解答 解:设A、B点坐标分别为(x1,y1),(x2,y2),
由OA⊥OB,得kOA•kOB=-1,即$\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}$=-1,
∴x1x2+y1y2=0,①
由$\left\{\begin{array}{l}{x+2y-3=0}\\{{x}^{2}+{y}^{2}+x-2cy+c=0}\end{array}\right.$,
得5y2-(2c+14)y+c+12=0,
则${y}_{1}+{y}_{2}=\frac{1}{5}(2c+14)y+c+12=0$,②
又x1x2=(3-2y1)(3-2y2)=9-6(y1+y2)+4y1y2
代入①,得9-6(y1+y2)+5y1y2=0,③
联立②③,解得c=3.
∴实数c的值为3.

点评 本题考查直线中参数值的求法,是中档题,解题时要认真审题,注意直线垂直的性质、韦达定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在△ABC中,分别根据下列条件解三角形,其中两解的是(  )
A.a=7,b=14,a=30°B.a=17,b=8,a=135°C.a=3,b=4,a=27°D.a=10,b=7,a=60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{{\begin{array}{l}{2cos\frac{πx}{3},x≤2000}\\{{2^{x-2010}},x>2000}\end{array}}$,则f(f(2015))=(  )
A.$\sqrt{3}$B.$-\sqrt{3}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知两圆C1:(x-1)2+y2=9.C2:(x+1)2+y2=1,动圆在圆C1内部且与圆C1相内切,与圆C2向外切
(1)求动圆圆心C的轨迹方程;
(2)已知A(-2,0),过A作斜率分别为k1,k2的两条直线交曲线C于D,E两点,且k1•k2=2,求证:直线DE过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,且$\overrightarrow{a}$•$\overrightarrow{b}$>0,则△ABC为钝角三角形(填“锐角”“直角”或“钝角”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.直线l:3x-4y-5=0与圆C:(x-2)2+(y-1)2=25交于A,B两点.
(1)求A,B两点的坐标.
(2)若M为圆C上的任意一点,求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=$\frac{a•{2}^{x}+{a}^{2}-2}{{2}^{x}+1}$.
(1)当a=1时,求f(x)的反函数;
(2)若f(x)在定义域上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一条隧道的顶部是抛物拱形,拱高是1.1m,跨度是2.2m,求拱形的抛物线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.计算log26-log224的值为-2.

查看答案和解析>>

同步练习册答案