如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求棱锥E-DFC的体积;
(3)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出的值;如果不存在,请说明理由.
(1)平面;(2);(3).
解析试题分析:本题主要考查线面垂直、线面平行、线线垂直、线线平行以及锥体体积问题,考查空间想象能力、运算能力和推理论证能力.第一问,在中,利用中位线得到与平行,通过线面平行的判断定理即可得到平面;第二问,要求三棱锥的体积,找到底面积和高是关键,通过的翻折得出平面,通过,得出平面,所以为锥体的高,利用锥体体积公式计算出体积;第三问,在线段上取点.使, 过作于,在中,利用边长求出的正切,从而确定角的度数,在等边三角形中,是角平分线,所以,再利用线面垂直的判定证出平面,所以.
试题解析:(1)平面,理由如下:
如图:在中,由分别是、中点,得,
又平面,平面.∴平面.
(2)∵,,将沿翻折成直二面角.
∴ ∴平面
取的中点,这时 ∴平面,,
(3)在线段上存在点,使
证明如下:在线段上取点.使, 过作于,
∵平面 ∴平面
∴, ∴,
∴ 在等边中, ∴
∵
科目:高中数学 来源: 题型:解答题
如图,边长为4的正方形ABCD与矩形ABEF所在平面互相垂直,M,N分别为AE,BC的中点,AF=3.
(I)求证:DA⊥平面ABEF;
(Ⅱ)求证:MN∥平面CDFE;
(Ⅲ)在线段FE上是否存在一点P,使得AP⊥MN? 若存在,求出FP的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点。
(Ⅰ)求证:平面FGH⊥平面AEB;
(Ⅱ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且.
(Ⅰ)求证:EF∥平面BDC1;
(Ⅱ)求二面角E-BC1-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,五面体中,四边形ABCD是矩形,DA面ABEF,且DA=1,AB//EF,,P、Q、M分别为AE、BD、EF的中点.
(1)求证:PQ//平面BCE;
(2)求证:AM平面ADF;
(3)求二面角A-DF-E的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com