精英家教网 > 高中数学 > 题目详情

【题目】在某城市气象部门的数据中,随机抽取了100天的空气质量指数的监测数据如表:

空气质量指数t

(0,50]

(50,100]

(100,150]

(150,200]

(200,300]

(300,+∞)

质量等级

轻微污染

轻度污染

中度污染

严重污染

天数K

5

23

22

25

15

10


(1)在该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量t(t取整数)存在如下关系y= ,且当t>300时,y>500估计在某一医院收治此类病症人数超过200人的概率;
(2)若在(1)中,当t>300时,y与t的关系拟合于曲线 ,现已取出了10对样本数据(ti , yi)(i=1,2,3,…,10),且 =42500, =500,求拟合曲线方程. (附:线性回归方程 =a+bx中,b= ,a= ﹣b

【答案】
(1)解:令y>200得2t﹣100>200,解得t>150,

∴当t>150时,病人数超过200人.

由频数分布表可知100天内空气指数t>150的天数为25+15+10=50.

∴病人数超过200人的概率P= =


(2)解:令x=lnt,则y与x线性相关, =7, =600,

∴b= =50,a=600﹣50×7=250.

∴拟合曲线方程为y=50x+250=50lnt+250


【解析】(1)令y>200解出t的取值范围,根据频数分布表计算此范围内的频率,则此频率近似等于所求的概率;(2)令x=lnt,利用回归系数公式求出y关于x的回归方程,再得出y关于t的拟合曲线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若存在两个正实数m、n,使得等式a(lnn﹣lnm)(4em﹣2n)=3m成立(其中e为自然对数的底数),则实数a的取值范围是(
A.(﹣∞,0)
B.(0, ]
C.[ ,+∞)
D.(﹣∞,0)∪[ ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如图,两个班人数均为60人,成绩80分及以上为优良.
(1)根据以上信息填好下列2×2联表,并判断出有多大的把握认为学生成绩优良与班级有关?

是否优良
班级

优良(人数)

非优良(人数)

合计

合计


(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选2人来作书面发言,求2人都来自甲班的概率. 下面的临界值表供参考:

P(x2k)

0.10

0.05

0.010

k

2.706

3.841

6.635

(以下临界值及公式仅供参考 ,n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: ,圆O:x2+y2=a2与y轴正半轴交于点B,过点B的直线与椭圆E相切,且与圆O交于另一点A,若∠AOB=60°,则椭圆E的离心率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且(a﹣c)(sinA+sinC)=(a﹣b)sinB.
(1)求角C的大小;
(2)若c= ≤a,求2a﹣b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=8,AD=4,AB=2DC=4
(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;
(2)求四棱锥P﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f′(x)是函数f(x)(x∈R)的导函数,f(0)=2,f′(x)﹣f(x)>ex , 则使得f(x)>xex+2ex成立的x的取值范围是(
A.(0,+∞)
B.(1,+∞)
C.(0,1)
D.(﹣∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解高一年级名学生在寒假里每天阅读的平均时间(单位:小时)情况,随机抽取了名学生,记录他们的阅读平均时间,将数据分成组: ,并整理得到如下的频率分布直方图:

)求样本中阅读的平均时间为内的人数.

)已知样本中阅读的平均时间在内的学生有人,现从高一年级名学生中随机抽取一人,估计其阅读的平均时间在内的概率.

)在样本中,使用分层抽样的方法,从阅读的平均时间在内的学生中抽取人,再从这人中随机选取人参加阅读展示,则选到的学生恰好阅读的平均时间都在内的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 满足Sn=2﹣an(n∈N*).数列{bn}满足(2n﹣1)bn+1﹣(2n+1)bn=0(n∈N*),且b1=1.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=anbn , 求数列{cn}的前n项和为Tn

查看答案和解析>>

同步练习册答案