精英家教网 > 高中数学 > 题目详情
对于两个集合S1、S2我们把一切有序对(x,y)所组成的集合(其中x∈S1,y∈S2),叫做S1和S2的笛卡尔积,记作S1×S2.如果S1={1,2},S2={-1,0,1},则S1×S2的真子集的个数为__________.

63

解:∵S1×S2这个集合中共有2×3=6个元素,

∴S1×S2的真子集个数为26-1=63.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•海淀区一模)对于集合M,定义函数fM(x)=
-1,x∈M
1,x∉M
,对于两个集合M,N,定义集合M△N={x|fM(x)•fN(x)=-1}.已知A={2,4,6,8,10},B={1,2,4,8,16}.
(Ⅰ)写出fA(1)和fB(1)的值,并用列举法写出集合A△B;
(Ⅱ)用Card(M)表示有限集合M所含元素的个数.
(ⅰ)求证:当Card(X△A)+Card(X△B)取得最小值时,2∈X;
(ⅱ)求Card(X△A)+Card(X△B)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•门头沟区一模)对于集合M,定义函数fM(x)=
-1,x∈M
1,x∉M
,对于两个集合M,N,定义集合M?N={x|fM(x)•fN(x)=-1.已知A={1,2,3,4,5,6},B={1,3,9,27,81}.
(Ⅰ)写出fA(2)与fB(2)的值,并用列举法写出集合A?B;
(Ⅱ)用Card(M)表示有限集合M所含元素的个数,求Card(X?A)+Card(x?b)的最小值;
(Ⅲ)有多少个集合对(P,Q),满足P,Q⊆A∪B,且(P?A)?(Q?B)=A?B.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于两个集合S1,S2,我们把一切有序对(x,y)所组成的集合(其中x∈S1,y∈S2)叫做S1和S2的笛卡儿积,记作S1×S2.如果S1={1,2},S2={-1,0,1},则S1×S2的真子集的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

对于两个集合S1,S2,我们把一切有序对(x,y)所组成的集合(其中x∈S1,y∈S2)叫做S1和S2的笛卡儿积,记作S1×S2.如果S1={1,2},S2={-1,0,1},则S1×S2的真子集的个数为________.

查看答案和解析>>

同步练习册答案