精英家教网 > 高中数学 > 题目详情

【题目】如图,在底面是菱形的四棱锥, 平面 分别为的中点,设直线与平面交于点.

1已知平面平面求证: .

2求直线与平面所成角的正弦值.

【答案】1见解析2.

【解析】试题分析:(1)由三角形中位线定理可得,利用线面平行的判定定理可得平面,在根据线面平行的性质定理可得;(2)由勾股定理可得 , ∵平面,由此可以点为原点,直线分别为轴建立空间直角坐标系,利用两直线垂直数量积为零列出方程组,分别求出直线的方向向量与平面的法向量,利用空间向量夹角余弦公式.

试题解析:1, 平面, 平面.

平面,

平面,平面平面

.

2底面是菱形 的中点

平面则以点为原点,直线分别为轴建立如图所示空间直角坐标系则

设平面的法向量为

解之得

设直线与平面所成角为

直线与平面所成角的正弦值为.

【方法点晴】本题主要考查线面平行的性质与判定以及利用空间向量求线面角,属于难题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中, ,动点满足:以为直径的圆与轴相切.

(1)求点的轨迹方程;

(2)设点的轨迹为曲线,直线过点且与交于两点,当的面积之和取得最小值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】地为绿化环境,移栽了银杏树棵,梧桐树.它们移栽后的成活率分别

,每棵树是否存活互不影响,在移栽的棵树中:

(1)求银杏树都成活且梧桐树成活的概率;

(2)求成活的棵树的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取100名学生,测得他们的身高(单位: ),按照区间

分组,得到样本身高的频率分布直方图(如图).

(1)求频率分布直方图中的值及身高在以上的学生人数;

(2)将身高在区间内的学生依次记为三个组,用分层抽样的方法从这三个组中抽取6人,求从这三个组分别抽取的学生人数;

(3)在(2)的条件下,要从6名学生中抽取2人.用列举法计算组中至少有1人被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点与抛物线 的焦点重合,椭圆的离心率为,过点作斜率不为0的直线,交椭圆两点,点,且为定值.

(1)求椭圆的方程;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的值域是____;若的值域是则实数的取值范围是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求证:函数是偶函数;

(2)设求关于的函数时的值域的表达式;

(3)若关于的不等式时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按下面的流程图进行计算.若输出的,则输入的正实数值的个数最多为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),且是它的极值点.

(1)求的值;

(2)求上的最大值;

(3)设,证明:对任意 都有

查看答案和解析>>

同步练习册答案