精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆过点,离心率为.若是椭圆上的不同的两点, 的面积记为.

(I)求椭圆的方程;

(II)设直线的方程为, , ,求的值;

(III)设直线, 的斜率之积等于,试证明:无论如何移动,面积保持不变.

【答案】I;(II;(III详见解析.

【解析】试题分析:(I)利用列方程,求出的值,由此得到椭圆方程.(II)联立直线的方程和椭圆方程,求得交点坐标,利用点到直线距离公式求得三角形的高,由此得到三角形面积的表达式,并由此求得的值.(III)设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理,代入向量运算,利用弦长公式和点到直线距离公式求得面积的表达式,化简得到面积保持不变.

试题解析:

(I)由题知,

解得,

所以椭圆的方程为.

(II)法1:由到直线的距离所以的面积解得

(III)椭圆方程为,

两点的直线的方程,其中, ,

,

,

,,

因为,

所以.

,

坐标原点到直线的距离为,

所以,

所以无论如何移动,面积保持不变. 的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F是PC的中点F.

(1)证明:PB∥平面AEC;
(2)若ABCD为正方形,探究在什么条件下,二面角C﹣AF﹣D大小为60°?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)时,求函数的单调递增区间;

(2)求函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC内接于直径为BC的圆O,过点A作圆O的切线交CB的延长线于点P,∠BAC的平分线分别交BC和圆O于点D、E,若PA=2PB=10.

(1)求证:AC=2AB;
(2)求ADDE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={|=},B={|<- 4或>2}.

(1) 若m= -2, 求A∩(RB)

(2)若AB=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2007全运会上两名射击运动员甲、乙在比赛中打出如下成绩:

甲:9.48.77.58.410.110.510.77.27.810.8

乙:9.18.77.19.89.78.510.19.210.19.1

(1)用茎叶图表示甲,乙两个成绩;并根据茎叶图分析甲、乙两人成绩;

2)分别计算两个样本的平均数和标准差,并根据计算结果估计哪位运动员的成绩比较稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n和为Sn , a1=2,当n≥2时,2Sn﹣an=n,则S2016的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l: (t为参数,α≠0)经过椭圆C: (φ为参数)的左焦点F.
(1)求实数m的值;
(2)设直线l与椭圆C交于A、B两点,求|FA|×|FB|取最小值时,直线l的倾斜角α.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)在图的直角坐标系中画出f(x)的图象;

(2)若f(t)=2,求t值;

(3)求函数f(x)的最小值.

查看答案和解析>>

同步练习册答案