【题目】某中学举行了一次“环保知识竞赛”, 全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
| 分组 | 频数 | 频率 |
第1组 | [50,60) | 8 | 0 16 |
第2组 | [60,70) | a | ▓ |
第3组 | [70,80) | 20 | 0 40 |
第4组 | [80,90) | ▓ | 0 08 |
第5组 | [90,100] | 2 | b |
合计 | ▓ | ▓ |
(1)求出的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动
(ⅰ)求所抽取的2名同学中至少有1名同学来自第5组的概率;
(ⅱ)求所抽取的2名同学来自同一组的概率
【答案】(1).(2)(ⅰ).(ⅱ)
【解析】试题分析:(1)首先由第一组或第三组可得样本容量为50 由此可得,由此得第二组的频率为,所以.由得;(2)(ⅰ)80分以上即在第四组和第五组 第4组共有4人,记为,第5组 共有2人,记为.从这6名同学中随机抽取2名同学有, 共15种情况.设“随机抽取的2名同学中至少有1名同学来自第5组”
有, 共9种情况.由此即可得所求概率 (ⅱ)2名同学来自同一组有共7种情况.由此可得所求概率
试题解析:(1)由题意可知, . (4分)
(2)(ⅰ)由题意可知,第4组共有4人,记为,第5组共有2人,记为.
从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学有,
共15种情况. (6分)
设“随机抽取的2名同学中至少有1名同学来自第5组”为事件,
有, 共9种情况. (9分)
所以随机抽取的2名同学中至少有1名同学来自第5组的概率是. (10分)
(ⅱ)设“随机抽取的2名同学来自同一组”为事件,有共7种情况.
所以随机抽取的2名同学来自同一组的概率(12分)
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左、右焦点分别为, ,点在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在斜率为2的直线,使得当直线与椭圆有两个不同交点、时,能在直线上找到一点,在椭圆上找到一点,满足?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,圆的方程为.
(Ⅰ)写出直线的普通方程和圆的直角坐标方程;
(Ⅱ)若点的直角坐标为,圆与直线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂修建一个长方体无盖蓄水池,其容积为6400立方米,深度为4米.池底每平方米的造价为120元,池壁每平方米的造价为100元.设池底长方形的长为x米.
(Ⅰ)求底面积,并用含x的表达式表示池壁面积;
(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体ABCD—A1B1C1D1中,
M、N分别是AB1、BC1的中点.
(Ⅰ)求证:直线MN//平面ABCD.
(Ⅱ)求B1到平面A1BC1的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空间中任意放置的棱长为2的正四面体.下列命题正确的是_________.(写出所有正确的命题的编号)
①正四面体的主视图面积可能是;
②正四面体的主视图面积可能是;
③正四面体的主视图面积可能是;
④正四面体的主视图面积可能是2
⑤正四面体的主视图面积可能是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,对于函数,称向量为函数的伴随向量,同时称函数为向量的伴随函数.
(Ⅰ)设函数,试求的伴随向量;
(Ⅱ)记向量的伴随函数为,求当且时的值;
(Ⅲ)由(Ⅰ)中函数的图像(纵坐标不变)横坐标伸长为原来的倍,再把整个图像向右平移个单位长度得到的图像。已知 ,问在的图像上是否存在一点,使得.若存在,求出点坐标;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com