£¨2007•×Ͳ©ÈýÄ££©Á½¸ö·ÖÀà±äÁ¿x¡¢y£¬ËüÃǵÄÖµÓò·Ö±ðÊÇ{x1£¬x2}¡¢{y1£¬y2}£¬ÆäÑù±¾ÆµÊýÁÐÁª±íΪ
y1 y2 ×ܼÆ
x2 a b a+b
x2 c d c+d
×Ü¼Æ a+c b+d a+b+c+d
ÈôÁ½¸ö·ÖÀà±äÁ¿x¡¢y¶ÀÁ¢£¬ÔòÏÂÁнáÂÛ
¢Ùad¡Öbc
¢Ú
a
a+b
¡Ö
c
c+d
     
¢Û
c+d
a+b+c+d
¡Ö
b+d
a+b+c+d

¢Ü
a+c
a+b+c+d
¡Ö
b+d
a+b+c+d
  
¢Ý
(a+b+c+)(ad-bc)2
(a+c)(b+d)(a+b)(c+d)
¡Ö0

ÖУ¬ÕýÈ·µÄÃüÌâÐòºÅÊÇ
¢Ù¢Ú¢Ý
¢Ù¢Ú¢Ý
£®£¨½«ÕýÈ·ÃüÌâÐòºÅ¶¼ÌîÉÏ£©
·ÖÎö£ºµ±adÓëbc²î¾àÔ½´ó£¬Á½¸ö±äÁ¿ÓйصĿÉÄÜÐÔ¾ÍÔ½´ó£¬·´Ö®Ô½¶ÀÁ¢£®¼ìÑéÎå¸öÑ¡ÏîÖÐËù¸øµÄadÓëbcµÄ²î¾à£¬Ñ¡Ïî¢Ù¢Ú¢Ý˵Ã÷adÓëbc²î¾àС£¬µÃµ½½á¹û£®
½â´ð£º½â£º¸ù¾Ý¹Û²âÖµÇó½âµÄ¹«Ê½¿ÉÒÔÖªµÀ£¬
µ±adÓëbc²î¾àÔ½´ó£¬Á½¸ö±äÁ¿ÓйصĿÉÄÜÐÔ¾ÍÔ½´ó£¬·´Ö®Ô½¶ÀÁ¢£®
Îå¸öÑ¡ÏîÖÐËù¸øµÄadÓëbcµÄ²î¾àС£¬Ñ¡Ïî¢Ù¢Ú¢Ý˵Ã÷adÓëbc²î¾àС£¬
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ý£®
µãÆÀ£ºÕâÑùµÄ×ö·¨¿ÉÒÔ´ÖÂÔµÄÅжÏÁ½¸ö±äÁ¿Ö®¼äµÄ¹Øϵ£¬¿ÉÒÔ»­³öÈýάÖùÐÎͼºÍ¶þάÌõÐÎͼÀ´Åжϣ¬ÒªÏëÖªµÀÁ½ÕßÖ®¼äµÄÓÐÎÞ¹ØϵµÄ¿ÉÐų̶ȣ¬Ö»ÄÜÓöÀÁ¢ÐÔ¼ìÑéµÄÓйؼÆË㣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•×Ͳ©ÈýÄ££©ÒÑ֪˫ÇúÏßx2-
y2
a
=1(a£¾0)
µÄÒ»Ìõ½¥½üÏßÓëÖ±Ïßx-2y+3=0´¹Ö±£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•×Ͳ©ÈýÄ££©ÔÚ¶þÏîʽ(
x
+
3
x
)n
µÄÕ¹¿ªÊ½ÖУ¬¸÷ÏîϵÊýÖ®ºÍΪA£¬¸÷Ïî¶þÏîʽϵÊýÖ®ºÍΪB£¬ÇÒA+B=72£¬ÔòÕ¹¿ªÊ½Öг£ÊýÏîµÄֵΪ
9
9
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•×Ͳ©ÈýÄ££©Õý·½ÌåABCD-A1B1C1D1µÄÀⳤΪ1£¬ÔÚÕý·½Ìå±íÃæÉÏÓëµãA¾àÀëÊÇ
2
3
3
µÄµãÐγÉÒ»ÌõÇúÏߣ¬ÕâÌõÇúÏߵij¤¶ÈÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•×Ͳ©ÈýÄ££©ÔÚ¡÷ABCÖУ¬a£¬b£¬cÊÇÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÇÒb2=ac£¬cosB=
34
£®
£¨1£©ÇócotA+cotCµÄÖµ£»
£¨2£©ÇósinA£ºsinB£ºsinCµÄ±ÈÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•×Ͳ©ÈýÄ££©¸´Êýz1=2+i£¬z2=-1+i£¬Ôò
z1
z2
µÄ¹²éÊý¶ÔÓ¦µãÔÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸