精英家教网 > 高中数学 > 题目详情
18.如果命题p∨q与命题p都是真命题,那么(  )
A.命题p不一定是假命题B.命题q一定为真命题
C.命题q不一定是真命题D.命题p与命题q的真假相同

分析 利用复合命题的真假直接判断即可.

解答 解:命题p∨q是真命题,说明两个命题至少一个是真命题,因为p是真命题,所以q不一定是真命题.
故选:C.

点评 本题考查命题的真假的判断与应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.三个数a=30.2,b=0.23,c=log0.23的大小关系为(  )
A.c<a<bB.b<a<cC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{2x+1}{x+1}$,判断函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知平行六面体ABCD-A1B1C1D1,底面ABCD是边长为1的正方形,AA1=2,∠A1AB=∠A1AD=120°,则异面直线AC1与A1D所成角的余弦值为(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{\sqrt{15}}{5}$D.$\frac{{\sqrt{14}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若曲线$\frac{x^2}{a-4}+\frac{y^2}{a+5}=1$的轨迹是双曲线,则a的取值范围是(-5,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线$\sqrt{7}$x-$\sqrt{5}$y+12=0相切.
(1)求椭圆C的方程;
(2)设A(-4,0),过点R(3,0)作与x轴不重合的直线l交椭圆C于P,Q两点,连接AP,AQ分别交直线x=$\frac{16}{3}$于M,N两点,若直线MR、NR的斜率分别为k1、k2,试问:k1k2是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$|{\overrightarrow a}|=\sqrt{3},|{\overrightarrow b}|=2$,$|{\overrightarrow a}|$与$|{\overrightarrow b}|$夹角为30°,则$|{\overrightarrow a-2\overrightarrow b}|$=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知i是虚数单位,复数$\frac{5}{2-i}$=(  )
A.i-2B.i+2C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.关于函数$f(x)=4sin(2x-\frac{π}{3})(x∈R)$,有下列命题:
①$y=f(x+\frac{5π}{12})$为偶函数;
②要得到g(x)=-4sin2x的图象,只需将f(x)的图象向右平移$\frac{π}{3}$个单位;
③y=f(x)的图象关于点$({\frac{π}{6},0})$对称;
④y=f(x)的单调递增区间为$[{2kπ-\frac{π}{12},2kπ+\frac{5π}{12}}](k∈Z)$.
其中正确的序号为①②③.

查看答案和解析>>

同步练习册答案