精英家教网 > 高中数学 > 题目详情
17.函数y=ax-b(a>0且a≠1)的图象如图1所示,则函数y=cosax+b的图象可能是(  )
A.B.
C.D.

分析 先由函数y=ax-b(a>0且a≠1)的图象,可知a>1,b>0,再根据图象的平移即可判断函数的图象.

解答 解:由函数y=ax-b(a>0且a≠1)的图象,可知a>1,且0<a-b<1=a0
∴-b<0,即b>0,
则函数y=cosax+b是由y=cosx的图象先纵坐标不变,横坐标拉伸为原来的$\frac{1}{a}$倍(即周期由2π,变为$\frac{2π}{a}$),再向上平移b个单位得到的,
故选:A.

点评 本题考查了指数函数和三角形函数的图象和变换,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.黄山市某民营企业2016年1,2,3月份的利润分别为1万元、1.2万元和1.3万元,为了估测以后每个月的利润,以这3个月的利润数字为依据,用一个函数模拟该企业的利润y(万元)与月份数x的关系,模拟函数可以选用二次函数f(x)=px2+qx+r(p≠0),也可以选用函数g(x)=a•bx+c(其中a,b,c为常数),已知4月份该企业的利润为1.314万元,请问用以上哪个函数作为模拟函数更好?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,过函数f(x)=logcx(c>1)的图象上的两点A,B作x轴的垂线,垂足分别为M(a,0),N(b,0)(b>a>1),线段BN与函数g(x)=logmx(m>c>1)的图象交于点C,且AC与x轴平行.
(1)当a=2,b=4,c=3时,求实数m的值;
(2)当b=a2时,求$\frac{m}{b}$-$\frac{2c}{a}$的最小值;
(3)已知h(x)=ax,φ(x)=bx,若x1,x2为区间(a,b)任意两个变量,且x1<x2,求证:h(f(x2))<φ(f(x1))

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图是一个棱锥的三视图,则该棱锥的体积为(  )
A.12B.4C.6D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.工人工资y(元)与劳动生产率x(千元)的相关关系的回归直线方程为$\widehat{y}$=50+80x,下列判断正确的是(  )
A.劳动生产率为1 000元时,工人工资为130元
B.劳动生产率提高1 000元时,工人工资平均提高80元
C.劳动生产率提高1 000元时,工人工资平均提高130元
D.当月工资为250元时,劳动生产率为2 000元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-4≥0}\\{2x+y-5≤0}\end{array}\right.$且3(x-a)+2(y+1)的最大值为5,则a等于(  )
A.-2B.-1C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax-lnx,函数g(x)=$\frac{1}{3}$bx3-bx,a∈R且b≠0.
(1)讨论函数f(x)的单调性;
(2)若a=1,且对任意的x1∈(1,2),总存在x2∈(1,2),使f(x1)+g(x2)=0成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,x<0}\\{\frac{1}{x},x>0}\end{array}\right.$的图象上存在不同的两点 A,B,使得曲线y=f(x)在这两点处的切线重合,则实数a的取值范围是(  )
A.($\frac{1}{4}$,1)B.(2,+∞)C.$({-∞,-2})∪({\frac{1}{4},+∞})$D.$({-∞,\frac{1}{4}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.不等式(x2-2x-3)(x2-4x+4)<0的解集为{x|-1<x<3且x≠2}.

查看答案和解析>>

同步练习册答案