精英家教网 > 高中数学 > 题目详情

 若椭圆的离心率为,焦点在轴上,且长轴长为10,曲线上的点与椭圆的两个焦点的距离之差的绝对值等于4.

(1)求椭圆的标准方程;

(2)求曲线的方程。

 

【答案】

(1)  ;(2) 

【解析】

试题分析:(1)因为椭圆的焦点在x轴上,所以设椭圆方程为,因为椭圆的离心率为,且长轴长为10,所以,又,所以  所以椭圆的标准方程为

(2)因为曲线上的点与椭圆的两个焦点的距离之差的绝对值等于4,所以曲线为焦点在x轴上的双曲线,设曲线,则焦距为6,,所以

所以曲线的方程为

考点:本题考查椭圆的标准方程;双曲线的标准方程;椭圆的简单性质;双曲线的简单性质。

点评:本题考查椭圆、双曲线的性质和应用,解题时要注意公式的灵活运用,注意区分椭圆和双曲线的性质以及标准方程.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:广东省揭阳市2007年高中毕业班第一次高考模拟考试题(文科) 题型:044

如图,在直角坐标系xOy中,已知椭圆的离心率e=

左右两个焦分别为F1、F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013届北京市东城区高三12月联考理科数学试卷(解析版) 题型:解答题

已知椭圆的离心率为,椭圆短轴的一个端点与两个焦

(Ⅰ)求椭圆的方程;

(Ⅱ)已知动直线与椭圆相交于两点. ①若线段中点的

横坐标为,求斜率的值;②若点,求证:为定值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的离心率为,椭圆短轴的一个端点与两个焦

点构成的三角形的面积为.

   (Ⅰ)求椭圆的方程;

(Ⅱ)已知动直线与椭圆相交于两点. ①若线段中点的

横坐标为,求斜率的值;②若点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年宁夏石嘴山市平罗中学高二(上)期中数学试卷(解析版) 题型:解答题

在直角坐标系xOy中,已知椭圆的离心率e=,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案