【题目】已知数列{an}的前n项和Sn=-n2+n,求数列{|an|}的前n项和Tn.
【答案】
【解析】试题分析:由Sn=-n2+n可得,故可得当当n≤34时,an>0;当n≥35时,an<0,分两种情况求数列{|an|}的前n项和Tn
试题解析:
当n≥2时, ,
an=Sn-Sn-1=-3n+104.
又时,a1=S1=-×12+×1=101,满足上式,
∴数列{an}的通项公式为an=-3n+104(n∈N*).
由an=-3n+104≥0,得n≤34.7.
即当n≤34时,an>0;当n≥35时,an<0
①当n≤34时,
Tn=|a1|+|a2|+…+|an|
=a1+a2+…+an
=Sn=-n2+n.
②当n≥35时,
Tn=|a1|+|a2|+…+|a34|+|a35|+…+|an|
=(a1+a2+…+a34)-(a35+a36+…+an)
=2(a1+a2+…+a34)-(a1+a2+…+an)
=2S34-Sn
=2-
=n2-n+3502.
综上Tn=
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣ax﹣2a2(x∈R).
(1)关于x的不等式f(x)<0的解集为A,且A[﹣1,2],求a的取值范围;
(2)是否存在实数a,使得当x∈R时, 成立.若存在给出证明,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位附近只有甲、乙两个临时停车场,它们各有个车位,为了方便市民停车,某互联网停车公司对这两个停车场,在某些固定时刻的剩余停车位进行记录,如下表:
时间 停车场 | 点 | 点 | 点 | 点 | 点 | 点 |
甲停车场 | ||||||
乙停车场 |
如果表中某一时刻剩余停车位数低于该停车场总车位数的,那么当车主驱车抵达单位附近时,该公司将会向车主发出停车场饱和警报.
(1)假设某车主在以上六个时刻抵达单位附近的可能性相同,求他收到甲停车场饱和警报的概率;
(2)从这六个时刻中任选一个时刻,求甲停车场比乙停车场剩余车位数少的概率;
(3)当乙停车场发出饱和警报时,求甲停车场也发出饱和警报的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}.
(1)若A∩B={2},求实数a的值;
(2)若A∪B=A,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体中,底面为矩形, , .点在棱上,平面与棱交于点.
(Ⅰ)求证: ;
(Ⅱ)求证:平面平面;
(Ⅲ)若, , ,平面平面,求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是边长为的正方形, 底面, 分别为的中点.
(Ⅰ)求证: 平面;
(Ⅱ)若,试问在线段上是否存在点,使得二面角 的余弦值为?若存在,确定点的位置;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com