精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和Sn=-n2n,求数列{|an|}的前n项和Tn.

【答案】

【解析】试题分析:由Sn=-n2n可得,故可得当当n≤34时,an>0;当n≥35时,an<0,分两种情况求数列{|an|}的前n项和Tn

试题解析:

n≥2时,

anSnSn-1=-3n+104.

时,a1S1=-×12×1=101,满足上式,

∴数列{an}的通项公式为an=-3n+104(n∈N*).

an=-3n+104≥0,得n≤34.7.

即当n≤34时,an>0;当n≥35时,an<0

①当n≤34时,

Tn=|a1|+|a2|+…+|an|

a1a2+…+an

Sn=-n2n.

②当n≥35时,

Tn=|a1|+|a2|+…+|a34|+|a35|+…+|an|

=(a1a2+…+a34)-(a35a36+…+an)

=2(a1a2+…+a34)-(a1a2+…+an)

=2S34Sn

=2

n2n+3502.

综上Tn

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,平面平面 分别为 的中点, .

(1)求证: 平面

(2)若上任一点,证明平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形中, ,将四边形沿着折叠,得到图2所示的三棱锥,其中

(1)证明:平面平面

(2)若中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣ax﹣2a2(x∈R).
(1)关于x的不等式f(x)<0的解集为A,且A[﹣1,2],求a的取值范围;
(2)是否存在实数a,使得当x∈R时, 成立.若存在给出证明,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位附近只有甲、乙两个临时停车场,它们各有个车位,为了方便市民停车,某互联网停车公司对这两个停车场,在某些固定时刻的剩余停车位进行记录,如下表:

时间

停车场

甲停车场

乙停车场

如果表中某一时刻剩余停车位数低于该停车场总车位数的,那么当车主驱车抵达单位附近时,该公司将会向车主发出停车场饱和警报.

(1)假设某车主在以上六个时刻抵达单位附近的可能性相同,求他收到甲停车场饱和警报的概率;

(2)从这六个时刻中任选一个时刻,求甲停车场比乙停车场剩余车位数少的概率;

(3)当乙停车场发出饱和警报时,求甲停车场也发出饱和警报的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}.
(1)若A∩B={2},求实数a的值;
(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,底面为矩形, .点在棱上,平面与棱交于点

(Ⅰ)求证:

(Ⅱ)求证:平面平面

(Ⅲ)若 ,平面平面,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为的正方形, 底面 分别为的中点.

)求证: 平面

)若,试问在线段上是否存在点,使得二面角 的余弦值为?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱中, ,侧面底面 的中点, .

(Ⅰ)求证:

(Ⅱ)求直线与平面所成线面角的正弦值.

查看答案和解析>>

同步练习册答案