精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
设函数,且不等式的解集为
(1)求的值;
(2)解关于的不等式

(1)b=2
(2)      
空集
  ..

解析试题分析:解:(1)由 函数,且不等式
解集为 知 
       所以...............4分
(2)........5分
     
    不等式的解集为空集  
    ..........10分
综上:      
   空集
  ....................12分.
考点:试题考查了一元二次不等式的解法。
点评:解决该试题的关键是利用不等式的解集是不等式成立的充要条件来得到参数的值,进而分析得到,他那哦故事要对于根大小不定的求解,分情况讨论,易忽略端点值,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
为了预防流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),

如图所示,根据图中提供的信息,回答下列问题:
(Ⅰ)从药物释放开始,求每立方米空气中的含药量
y(毫克)与时间t(小时)之间的函数关系式?
(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到教室.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为,如图所示。

(1)请写出从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。那么,从药物释放开始,至少需要经过多少小时后,学生才能回到教室。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数,其中
(Ⅰ)求上的单调区间;
(Ⅱ)求为自然对数的底数)上的最大值;
(III)对任意给定的正实数,曲线上是否存在两点,使得是以原点为直角顶点的直角三角形,且此三角形斜边中点在轴上?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数的图象过点(1,13),图像关于直线对称。
(1)求的解析式。
(2)已知,
① 若函数的零点有三个,求实数的取值范围;
②求函数在[,2]上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知某公司生产某品牌服装的年固定成本为10万元,每生产一千件,需要另投入2.7万元.设该公司年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且.
(I)写出年利润(万元)关于年产量(千件)的函数关系式;
(Ⅱ)年生产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题14分)已知函数
(Ⅰ)求函数的定义域;
(Ⅱ)用定义判断的奇偶性;

查看答案和解析>>

同步练习册答案