精英家教网 > 高中数学 > 题目详情
13.函数f(x)=ax3-sinbx+2015(x∈R),若$f(\frac{π}{4})=1$,则$f(-\frac{π}{4})$=4029.

分析 利用函数的奇偶性以及函数值求解即可.

解答 解:函数f(x)=ax3-sinbx+2015(x∈R),若$f(\frac{π}{4})=1$,
可得a($\frac{π}{4}$)3-sinb$\frac{π}{4}$+2015=1,
可得a($\frac{π}{4}$)3-sinb$\frac{π}{4}$=-2014.
$f(-\frac{π}{4})$=-[a($\frac{π}{4}$)3-sinb$\frac{π}{4}$]+2015=2014+2015=4029.
故答案为:4029.

点评 本题考查函数的奇偶性的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知集合A={x||x-1≤1},B={x|y=$\sqrt{1-3x}$},则A∩B=[0,$\frac{1}{3}$],(∁RA)∪B=(-∞,$\frac{1}{3}$]∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)若抛物线的焦点在y轴上,点 A(m,-2)在抛物线上,且|AF|=3,求抛物线的标准方程及△O AF的面积.
(2)以椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{5}$=1的长轴短点为焦点,且经过(3,$\sqrt{10}$)的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=log0.5(x-1)的定义域为(  )
A.(-1,+∞)B.(1,+∞)C.(0,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若实数数列{an}满足${a_{n+2}}=|{{a_{n+1}}}|-{a_n}(n∈{N^*})$,则称数列{an}为“P数列”.
(Ⅰ)若数列{an}是P数列,且a1=0,a4=1,求a3,a5的值;
(Ⅱ)求证:若数列{an}是P数列,则{an}的项不可能全是正数,也不可能全是负数;
(Ⅲ)若数列{an}为P数列,且{an}中不含值为零的项,记{an}前2016项中值为负数的项的个数为m,求m所有可能取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示,y=f(x)是可导函数,直线l:y=kx+3是曲线y=f(x)在x=1处的切线,令h(x)=xf(x),h′(x)是h(x)的导函数,则h′(1)的值是(  )
A.2B.1C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,是奇函数,又是定义域内为减函数的是(  )
A.y=|$\frac{1}{2}$|xB.y=$\frac{1}{x}$C.y=-x3D.y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知四面体ABCD的侧面展开图如图所示,则其体积为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设f(x)是定义在R上周期为2的函数,且对任意的实数x,恒有f(x)-f(-x)=0,当x∈[-1,0]时,f(x)=x2,若函数g(x)=f(x)-logax(a>0且a≠1)在x∈(0,+∞)上有且仅有三个零点,则a的取值范围为(3,5).

查看答案和解析>>

同步练习册答案