精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:方程 =1表示焦点在y轴上的椭圆;命题q:双曲线 =1的离心率e∈(1,2).若命题p、q有且只有一个为真,求m的取值范围.

【答案】解:将方程 改写为 , 只有当1﹣m>2m>0,即 时,方程表示的曲线是焦点在y轴上的椭圆,所以命题p等价于
因为双曲线 的离心率e∈(1,2),
所以m>0,且1 ,解得0<m<15,
所以命题q等价于0<m<15;
若p真q假,则m∈
若p假q真,则
综上:m的取值范围为[ ,15)
【解析】根据题意求出命题p、q为真时m的范围分别为0<m< 、0<m<15.由p、q有且只有一个为真得p真q假,或p假q真,进而求出答案即可.
【考点精析】利用命题的真假判断与应用和椭圆的标准方程对题目进行判断即可得到答案,需要熟知两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系;椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD中底面四边形ABCD是正方形,各侧面都是边长为2的正三角形,M是棱PC的中点.建立空间直角坐标系,利用空间向量方法解答以下问题:
(1)求证:PA∥平面BMD;
(2)求二面角M﹣BD﹣C的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上. (Ⅰ)求异面直线D1E与A1D所成的角;
(Ⅱ)若二面角D1﹣EC﹣D的大小为45°,求点B到平面D1EC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b∈R,若a2+b2﹣ab=1,则ab的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=log2(x+2)的定义域是(
A.[2,+∞)
B.[﹣2,+∞)
C.(﹣2,+∞)
D.(﹣∞,﹣2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2006(x)=(
A.sinx
B.﹣sinx
C.cosx
D.﹣cosx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD与AB垂直,并与AB相交于点E,点F为弦CD上异于点E的任意一点,连接BF、AF并延长交⊙O于点M、N.
(1)求证:B、E、F、N四点共圆;
(2)求证:AC2+BFBM=AB2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为: (t为参数),它与曲线C:(y﹣2)2﹣x2=1交于A,B两点.
(1)求|AB|的长;
(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为 ,求点P到线段AB中点M的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,OA、OB是两条公路(近似看成两条直线), ,在∠AOB内有一纪念塔P(大小忽略不计),已知P到直线OA、OB的距离分别为PD、PE,PD=6千米,PE=12千米.现经过纪念塔P修建一条直线型小路,与两条公路OA、OB分别交于点M、N.
(1)求纪念塔P到两条公路交点O处的距离;
(2)若纪念塔P为小路MN的中点,求小路MN的长.

查看答案和解析>>

同步练习册答案