精英家教网 > 高中数学 > 题目详情

已知实数k满足数学公式.则方程x2-kx+1=0的两个根可分别作为


  1. A.
    一椭圆和一双曲线的离心率
  2. B.
    两抛物线的离心率
  3. C.
    一椭圆和一抛物线的离心率
  4. D.
    两椭圆的离心率
A
分析:由题意求出k的范围,判断方程的两个根的范围,即可判断正确选项.
解答:因为,解得:2<k<3,方程x2-kx+1=0,可知k2-4>0,
当x=1时,x2-kx+1<0,x=0时x2-kx+1>0,所以方程的根一个大于1,一个在(0,1)之间.
所以方程x2-kx+1=0的两个根可分别作为一椭圆和一双曲线的离心率.
故选A.
点评:本题是基础题,考查不等式的解法,函数的零点与方程的根,二次曲线的判断,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若数列{an}满足an+12-an2=d,其中d为常数,则称数列{an}为等方差数列.已知等方差数列{an}满足an>0,a1=1,a5=3.
(1)求数列{an}的通项公式.
(2)求数列{
a
2
n
(
1
2
)n}
的前n项和.
(3)记bn=nan2,则当实数k大于4时,不等式kbn大于n(4-k)+4能否对于一切的n∈N*恒成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)给出下列命题:
①设向量
e1
e2
满足|
e1
|=2,|
e2
|=1,
e1
e2
的夹角为
π
3
.若向量2t
e1
+7
e2
e1
+t
e2
的夹角为钝角,则实数t的取值范围是(-7,-
1
2
);
②已知一组正数x1,x2,x3,x4的方差为s2=
1
4
(x12+x22+x32+x42)-4,则x1+1,x2+1,x3+1,x4+1的平均数为1
③设a,b,c分别为△ABC的角A,B,C的对边,则方程x2+2ax+b2=o与x2+2cx-b2=0有公共根的充要条件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的数字之和,如112+1=122,1+2+2=5,所以f(n)=5,记f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,则f20(5)=11.
上面命题中,假命题的序号是
 (写出所有假命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若数列{an}满足an+12-an2=d,其中d为常数,则称数列{an}为等方差数列.已知等方差数列{an}满足an>0,a1=1,a5=3.
(1)求数列{an}的通项公式.
(2)求数列数学公式的前n项和.
(3)记bn=nan2,则当实数k大于4时,不等式kbn大于n(4-k)+4能否对于一切的n∈N*恒成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖南省长沙一中高三(下)第九次月考数学试卷(文科)(解析版) 题型:解答题

若数列{an}满足an+12-an2=d,其中d为常数,则称数列{an}为等方差数列.已知等方差数列{an}满足an>0,a1=1,a5=3.
(1)求数列{an}的通项公式.
(2)求数列的前n项和.
(3)记bn=nan2,则当实数k大于4时,不等式kbn大于n(4-k)+4能否对于一切的n∈N*恒成立?请说明理由.

查看答案和解析>>

同步练习册答案