精英家教网 > 高中数学 > 题目详情
5.己知f(x),g(x)都是定义在R上的函数,并满足f(x)=ax•g(x)(a>0,且a≠1)和f(x)•g′(x)>f′(x)•g(x)(g(x)≠0),且$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,则a的值为(  )
A.$\frac{1}{2}$B.2C.$\frac{5}{4}$D.2或$\frac{1}{2}$

分析 由已知得∴$\frac{f(x)}{g(x)}$=ax,且$\left\{\begin{array}{l}{0<a<1}\\{a+\frac{1}{a}=\frac{5}{2}}\end{array}\right.$,由此能求出a的值.

解答 解:∵f(x),g(x)都是定义在R上的函数,并满足f(x)=ax•g(x)(a>0,且a≠1),
∴$\frac{f(x)}{g(x)}$=ax
∵f(x)•g′(x)>f′(x)•g(x)(g(x)≠0),且$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,
∴$\left\{\begin{array}{l}{0<a<1}\\{a+\frac{1}{a}=\frac{5}{2}}\end{array}\right.$,解得a=$\frac{1}{2}$.
故选为:A.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在△ABC中,角A,B,C所对的边分别为a,b,c.若A=B,a=3,c=2,则cosC=$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设平面直角坐标系中,A(-1,1),B(-1,2),C(-4,1).
(1)求直线BC与坐标轴围成三角形的面积;
(2)求△ABC的外接圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.目前男子室外跳高的世界纪录是2.45m.在一次国际室外男子跳高比赛中,某运动员试跳2.20m的高度,根据训练情况,该运动员在该高度上一次试跳不过杆的概率为0.3,连续两次试跳不过杆的概率为0.1,若该运动员第一次试跳不过杆,则第二次试跳过杆的概率(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{kx+2,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,则下列关于函数y=f[f(x)]-$\frac{3}{2}$的零点个数的判断正确的是(  )
A.当k≥0时,有1个零点;当k<0时,有2个零点
B.当k≥0时,没有零点;当-$\frac{1}{2}$<k≤-$\frac{1}{4}$时,有3个零点,当k≤-$\frac{1}{2}$或-$\frac{1}{4}$<k<0有2个零点
C.当k≥0时,没有零点;当-$\frac{1}{2}$<k<0时,有3个零点,当k≤-$\frac{1}{2}$有2个零点
D.当k≥0时,没有零点;当-$\frac{1}{2}$≤k<-$\frac{1}{4}$时,有3个零点,当k<-$\frac{1}{2}$或-$\frac{1}{4}$≤k<0有2个零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有下列命题:
①若函数f(x)=3sin(ωx+φ)对于任意的x都有f($\frac{π}{6}$+x)=-f($\frac{π}{6}$-x),则f($\frac{π}{6}$)=0;
②正切函数在定义域上单调递增;
③曲线g(x)=x2与曲线f(x)=2x有三个公共点;
④若$\overrightarrow{a}$∥$\overrightarrow{b}$,则有且只有一个实数λ,使$\overrightarrow{b}$=λ$\overrightarrow{a}$;
⑤已知函数f(x)=$\left\{\begin{array}{l}{sin(\frac{π}{2}x)-1,x<0}\\{lo{g}_{a}x(a>0,a≠1),x>0}\end{array}\right.$的图象上关于y轴对称的点至少有3对,则实数a的取值范围是(0,$\frac{\sqrt{5}}{5}$).
其中正确命题的序号是①③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.a、b、c是-个长方体的长、宽、高,且a+b-c=1.已知长方体对角线长为1,且a>b,则高c的取值范围是(0,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个三角形在一个平面上的投影是(  )
A.一个三角形B.一条线段
C.一个点D.一个三角形或一条线段

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.△ABC中,$\overrightarrow{BD}$=$\overrightarrow{DC}$,A=120°,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-2,则|$\overrightarrow{AD}$|的最小值是1.

查看答案和解析>>

同步练习册答案