【题目】已知等差数列的前项和为,公差,且, 成等比数列.
(1)求数列的通项公式;
(2)设,求数列的前项和.
【答案】(1)(2)
【解析】试题分析:(1)由数列为等比数列,可以化基本量,再求得a1=3,d=2,最终出通项.
(2)由第一问知的通项,根据错位相减的方法得到Tn=n3n
(1). ∵S1+S3=18,a1,a4,a13成等比数列.
∴4a1+3d=18,
解得a1=3,d=2.
∴an=3+2(n﹣1)=2n+1.
(2)bn=(2n+1)3n﹣1.
∴数列{bn}前n项和Tn=3+5×3+7×32+…+(2n+1)3n﹣1.
3Tn=32+5×32+…+(2n﹣1)3n﹣1+(2n+1)3n,
∴﹣2Tn=3+2×(3+32+…+3n﹣1)﹣(2n+1)3n= +1﹣(2n+1)3n
∴Tn=n3n.
科目:高中数学 来源: 题型:
【题目】某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出和收益情况,如表:
售出水量x(单位:箱) | 7 | 6 | 6 | 5 | 6 |
收益y(单位:元) | 165 | 142 | 148 | 125 | 150 |
(1)求y关于x的线性回归方程;
(2)预测售出8箱水的收益是多少元?
附:回归直线的斜率和截距的最小二乘法估计公式分别为: = , = ﹣ ,
参考数据:7×165+6×142+6×148+5×125+6×150=4420.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的空间几何体中,底面四边形为正方形, , ,平面平面, , , .
(1)求二面角的大小;
(2)若在平面上存在点,使得平面,试通过计算说明点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,已知 tanAtanB﹣tanA﹣tanB= .
(1)求∠C的大小;
(2)设角A,B,C的对边依次为a,b,c,若c=2,且△ABC是锐角三角形,求a2+b2的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,甲船在A处,乙船在A处的南偏东45°方向,距A有9n mile并以20n mile/h的速度沿南偏西15°方向航行,若甲船以28n mile/h的速度航行,应沿什么方向,用多少h能尽快追上乙船?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【广东省惠州市2017届高三上学期第二次调研】已知点,点是圆上的任意一点,线段的垂直平分线与直线交于点.
(Ⅰ)求点的轨迹方程;
(Ⅱ)若直线与点的轨迹有两个不同的交点和,且原点总在以为直径的圆的内部,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择.
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为,第一次抽奖,若未中奖,则抽奖结束,若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖。规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1000元;若未中奖,则所获得奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为,每次中奖均可获得奖金400元.
(1)求某员工选择方案甲进行抽奖所奖金(元)的分布列;
(2)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设已知双曲线的焦点为,过的直线与曲线相交于两点.
(1)若直线的倾斜角为,且,求;
(2)若,椭圆上两个点满足: 三点共线且,求四边形的面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com