精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程是:是参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.

1)若直线与曲线相交于两点,且,试求实数值;

2)设为曲线上任意一点,求的取值范围.

【答案】1;(2.

【解析】

1)把直线、曲线方程化为直角坐标方程后根据圆心到直线的距离和半径的关系建立方程即可.(2)利用圆的参数方程,根据点到直线的距离公式和三角函数的知识求解.

解析:(1)曲线的极坐标方程是化为直角坐标方程为:,直线的直角坐标方程为:.

所以圆心到直线的距离(弦心距)

圆心到直线的距离为:

所以

所以

2)曲线C的方程可化为,其参数方程为为参数)

因为为曲线C上任意一点,

所以的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学对函数进行研究后,得出以下结论,其中正确的有(

A.函数的图象关于原点对称

B.对定义域中的任意实数的值,恒有成立

C.函数的图象与轴有无穷多个交点,且每相邻两交点间距离相等

D.对任意常数,存在常数,使函数上单调递减,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点在轴上,中心在坐标原点,抛物线的焦点在轴上,顶点在坐标原点,在上各取两个点,将其坐标记录于表格中:

1)求的标准方程;

2)已知定点为抛物线上的一动点,过点作抛物线的切线交椭圆两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体棱长为,如图,上的动点,平面.下面说法正确的是(

A.直线与平面所成角的正弦值范围为

B.与点重合时,平面截正方体所得的截面,其面积越大,周长就越大

C.的中点时,若平面经过点,则平面截正方体所得截面图形是等腰梯形

D.己知中点,当的和最小时,的中点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线与曲线在公共点处有共同的切线,求实数的值;

(Ⅱ)在(Ⅰ)的条件下,试问函数是否有零点?如果有,求出该零点;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是坐标系的原点,是抛物线的焦点,过点的直线交抛物线于两点,弦的中点为的重心为

1)求动点的轨迹方程;

2)设(1)中的轨迹与轴的交点为,当直线轴相交时,令交点为,求四边形的面积最小时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,已知函数,记函数的零点个数分别是,则(

A.,则B.,则

C.,则D.,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面B,且,且,则下列叙述错误的是(

A.直线是异面直线

B.直线上的射影可能与平行

C.有且只有一个平面与平行

D.有且只有一个平面与垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,以极点为原点,极轴所在直线为轴建立直角坐标系,过点作倾斜角为)的直线交曲线两点.

1)求曲线的直角坐标方程,并写出直线的参数方程;

2)过点的另一条直线垂直,且与曲线交于两点,求的最小值.

查看答案和解析>>

同步练习册答案