精英家教网 > 高中数学 > 题目详情

【题目】已知正方体ABCD-A1B1C1D1的棱长为a,点EFG分别为棱ABAA1C1D1的中点.下列结论中,正确结论的序号是______

①过EFG三点作正方体的截面,所得截面为正六边形;

B1D1∥平面EFG

BD1⊥平面ACB1

④异面直线EFBD1所成角的正切值为

⑤四面体ACB1D1的体积等于a3

【答案】①③④

【解析】

根据公理3,作截面可知①正确;根据直线与平面的位置关系可知②不正确;根据线面垂直的判定定理可知③正确;根据异面直线所成的角的定义求得异面直线EFBD1的夹角的正切值为,可知④正确;用正方体体积减去四个正三棱锥的体积可知⑤不正确.

解:延长EF分别与B1A1B1B的延长线交于NQ,连接GNA1D1H

HGB1C1的延长线交于P,连接PQCC1I,交BCM

FHHGGIIMME,则截面六边形EFHGIM为正六边形,故①正确;

B1D1HG相交,故B1D1与平面 EFG相交,所以②不正确;

BD1ACBD1B1C,且ACB1C相交,所以BD1⊥平面ACB1,故③正确;

的中点,连接,则

所以就是异面直线EFBD1的夹角,

设正方体的边长为,可得:,,,

所以是直接三角形.可得:.

可得异面直线EFBD1的夹角的正切值为,故④正确;

四面体ACB1D1的体积等于正方体的体积减去四个正三棱锥的体积,

即为,故⑤不正确.

故答案为:①③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线是中心在原点,焦点在轴上的双曲线的右支,它的离心率刚好是其对应双曲线的实轴长,且一条渐近线方程是,线段是过曲线右焦点的一条弦,是弦的中点。

(1)求曲线的方程;

(2)求点轴距离的最小值;

(3)若作出直线使点在直线上的射影满足.当点在曲线上运动时,求的取值范围.

(参考公式:若为双曲线右支上的点,为右焦点,则.(为离心率))

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,在直线

(1)求数列{an}的通项公式

(2)令,数列的前n项和为

(ⅰ)求

(ⅱ)是否存在整数λ,使得不等式(-1)nλ (nN)恒成立?若存在,求出λ的取值的集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知平面,且四边形为直角梯形,,点,分别是,的中点.

(1)求证:平面

(2)若点为棱上一点,且平面平面, 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)是否存在实数,使得等式 对于一切正整数都成立?若存在,求出的值并给出证明;若不存在,请说明理由.

(2)求证:对任意的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论正确的是(

A.中,若,则

B.在锐角三角形中,不等式恒成立

C.中,若,则为等腰直角三角形

D.中,若,三角形面积,则三角形外接圆半径为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对应的边分别为abc,已知b1c22cosAbcosC+ccosB)=a,则A__________;若M为边BC的中点,则|AM|__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,有正弦定理:定值,这个定值就是的外接圆的直径如图2所示,中,已知,点M在直线EF上从左到右运动M不与EF重合,对于M的每一个位置,记的外接圆面积与的外接圆面积的比值为,那么  

A. 先变小再变大

B. 仅当M为线段EF的中点时,取得最大值

C. 先变大再变小

D. 是一个定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F为抛物线C:x2=2py (p>0) 的焦点,点A(m,3)在抛物线C上,且|AF|=5,若点P是抛物线C上的一个动点,设点P到直线的距离为,设点P到直线的距离为

(1)求抛物线C的方程;

(2) 求的最小值;

(3)求的最小值.

查看答案和解析>>

同步练习册答案