【题目】某村计划建造一个室内面积为800m2的矩形蔬菜温室,在室内,沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为, , 为椭圆的上顶点, 为等边三角形,且其面积为, 为椭圆的右顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与椭圆相交于两点(不是左、右顶点),且满足,试问:直线是否过定点?若过定点,求出该定点的坐标,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018海南高三阶段性测试(二模)】如图,在直三棱柱中, , ,点为的中点,点为上一动点.
(I)是否存在一点,使得线段平面?若存在,指出点的位置,若不存在,请说明理由.
(II)若点为的中点且,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高考复习经过二轮“见多识广”之后,为了研究考前“限时抢分”强化训练次数与答题正确率的关系,对某校高三某班学生进行了关注统计,得到如表数据:
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求关于的线性回归方程,并预测答题正确率是的强化训练次数(保留整数);
(2)若用()表示统计数据的“强化均值”(保留整数),若“强化均值”的标准差在区间内,则强化训练有效,请问这个班的强化训练是否有效?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
, ,样本数据, ,…, 的标准差为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某技术公司开发的某种产品中随机抽取200件,测量这些产品的一项质量指标值(记为),由测量结果得到如下频率分布直方图:
公司规定:当时,产品为正品;当时,产品为次品,公司每生产一件这种产品,若是正品,则盈利90元;若是次品,则亏损30元,记的分布列和数学期望;
由频率分布直方图可以认为,服从正态分布,其中近似为样本平均数,近似为样本方差(同一组中的数据用该区间的中点值作代表)
①利用该正态分布,求;
②某客户从该公司购买了500件这种产品,记表示这500件产品中该项质量指标值位于区间的产品件数,利用①的结果,求.
附:,
若,则,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的参数方程为(为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)若过点的直线与交于,两点,与交于,两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4,坐标系与参数方程
已知在平面直角坐标系xOy中,椭圆C的方程为,以O为极点,x轴的非负半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.
(1)求直线的直角坐标方程;
(2)设M(x,y)为椭圆C上任意一点,求|x+y﹣1|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数,),在以坐标原点为极点,轴非负轴为极轴的极坐标系中,曲线:(为极角).
(1)将曲线化为极坐标方程,当时,将化为直角坐标方程;
(2)若曲线与相交于一点,求点的直角坐标使到定点的距离最小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com