精英家教网 > 高中数学 > 题目详情
19.设离散型随机变量ξ的分布列如下,则Dξ等于(  )
ξ102030
P0.6a0.1
A.55B.30C.15D.45

分析 利用分布列求出a,求出期望,然后求解方差.

解答 解:离散型随机变量ξ的分布列可得:a=1-0.6-0.1=0.3.
Eξ=10×0.6+20×0.3+30×0.1=15.
Dξ=0.6×25+0.3×25+0.1×225=45.
故选:D.

点评 本题考查离散性随机变量的期望与方差的求法,分布列的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若α,β∈[-$\frac{π}{2}$,$\frac{π}{2}$],且αsinα>βsinβ,则下列关系式:①α>β; ②α<β; ③α+β>0; ④|α|>|β|; ⑤α2≤β2
其中正确的序号是④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,直线l过点P(-1,2),倾斜角为$\frac{3π}{4}$.以坐标原点为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρ=4cosθ.
(1)写出直线l的参数方程和曲线C的直角坐标方程;
(2)记直线l和曲线C的两个交点分别为A,B,求|PA|+|PB|,|PA|•|PB|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若2x=9,${log_2}\frac{8}{3}=y$,则x+2y=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)═cos2($\frac{2017π}{3}$+ωx)+$\sqrt{3}$sinωxcosωx,(ω>0).若x∈($\frac{π}{6}$,$\frac{π}{3}$)时,f(x)有且只有一个最小值,没有最大值,且f($\frac{π}{6}$)=f($\frac{π}{3}$),则f($\frac{π}{10}$)的值为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.$\frac{2+\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.复数$z=\frac{3-i}{1-i}$的共轭复数是2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某中学高一、高二、高三年级分别有60人、30人、45人选修了学校开设的某门校本课程,学校用分层抽样的方法从三个年级选修校本课程的人中抽取了一个样本,了解学生对校本课程的学习情况.已知样本中高三年级有3人.
(Ⅰ)分别求出样本中高一、高二年级的人数;
(Ⅱ)用Ai(i=1,2…)表示样本中高一年级学生,Bi(i=1,2…)表示样本中高二年级学生,现从样本中高一、高二年级的所有学生中随机抽取2人.
(ⅰ)用以上学生的表示方法,采用列举法列举出上诉所有可能的情况;
(ⅱ)求(ⅰ)中2人在同一年级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,$3sinAcosB+\frac{1}{2}bsin2A=3sinC$,且$A≠\frac{π}{2}$
(1)求a的值;       
(2)若$A=\frac{2π}{3}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC的周长为26且点A,B的坐标分别是(-6,0),(6,0),则点C的轨迹方程为$\frac{{x}^{2}}{49}+\frac{{y}^{2}}{13}$=1(x≠±7).

查看答案和解析>>

同步练习册答案