精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:x∈(1,+∞), >1;命题q:a∈(0,1),函数y=ax在(﹣∞,+∞)上为减函数,则下列命题为真命题的是(
A.p∧q
B.¬p∧q
C.p∧¬q
D.¬p∧¬q

【答案】A
【解析】 解:命题p:x∈(1,+∞),由幂函数的性质可得 >1,是真命题;
命题q:a∈(0,1),函数y=ax在(﹣∞,+∞)上为减函数,利用指数函数的单调性可知:是真命题.
则下列命题为真命题的是p∧q,其余的为假命题.
故选;A.
【考点精析】解答此题的关键在于理解复合命题的真假的相关知识,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣ax,(a>0), ,命题p:an=f(n)是递增数列,命题q:g(x)在(a,π)上有且仅有2条对称轴.
(1)求g(x)的周期和单调递增区间;
(2)若p∧q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是导数y=f′x)的图象,则函数y=fx)的图象是(  )

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(2,4),B(4,2),C(6,6).

(1)求角A的余弦值;

(2)作AB的底边上的高CDD为垂足,求点D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点F1 , F2在轴上,焦距为2,离心率为
(1)求椭圆C的方程;
(2)若P是椭圆C上第一象限内的点,△PF1F2的内切圆的圆心为I,半径为 .求:
(i)点P的坐标;
(ii)直线PI的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知yf(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x2-2x.

(1)写出函数yf(x)的解析式

(2)若方程f(x)=a恰有3个不同的解,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的半焦距为左焦点为,右顶点为,抛物线与椭圆交于两点,若四边形是菱形,则椭圆的离心率是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:

年份

2010

2011

2012

2013

2014

时间代号

1

2

3

4

5

储蓄存款 (千亿元)

6

7

8

9

10

(1)求关于的回归方程

(2)用所求回归方程预测该地区2015年的人民币储蓄存款.

附:回归方程中,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=是奇函数,gx)=log2(2x+1)-bx是偶函数.

(1)求a-b;

(2)若对任意的t∈[-1,2],不等式f(t2-2t-1)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案