已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若,求实数k值.
(1);(2),检验合格.
解析试题分析:(1)先求抛物线的焦点为F( ,0),从而设双曲线方程,再将点(1, )代入,可求双曲线C的方程;(2)将直线方程与双曲线方程联立,将向量垂直条件转化为数量积为0,从而可得方程,进而可解.
解:(1)抛物线的焦点是(),则双曲线的.………………1分
设双曲线方程:…………………………2分
解得:…………………………5分
(2)联立方程:
当……………………7分(未写△扣1分)
由韦达定理:……………………8分
设
代入可得:,检验合格.……12分
考点:本题主要考查了以抛物线为载体,考查利用待定系数法求双曲线的标准方程,考查向量垂直。.
点评:解决该试题的关键是利用其数量积为0求解。同理能将抛物线的性质和双曲线的性质很好的结合起来求解双曲线的方程。
科目:高中数学 来源: 题型:解答题
(12分)已知椭圆中心在原点,一个焦点为,且长轴长与短轴长的比是。
(1)求椭圆的方程;(5分)
(2)是否存在斜率为的直线,使直线与椭圆有公共点,且原点与直线的距离等于4;若存在,求出直线的方程,若不存在,说明理由。(7分)。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
在直角坐标系中,点到两点,的距离之和等于,设点的轨迹为。
(1)求曲线的方程;
(2)过点作两条互相垂直的直线分别与曲线交于和。
①以线段为直径的圆过能否过坐标原点,若能求出此时的值,若不能说明理由;
②求四边形面积的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知抛物线的顶点为坐标原点,焦点在轴上. 且经过点,
(1)求抛物线的方程;
(2)若动直线过点,交抛物线于两点,是否存在垂直于轴的直线被以为直径的圆截得的弦长为定值?若存在,求出的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题16分)在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.
(Ⅰ)求抛物线的方程;
(Ⅱ)是否存在点,使得直线与抛物线相切于点?若存在,求出点的坐标;若不存在,说明理由;
(Ⅲ)若点的横坐标为,直线与抛物线有两个不同的交点,与圆有两个不同的交点,求当时,的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆的离心率为,定点,椭圆短轴的端点是,,且.
(1)求椭圆的方程;
(2)设过点且斜率不为的直线交椭圆于,两点.试问轴上是否存在定点,使平分?若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com