精英家教网 > 高中数学 > 题目详情
二次函数y=ax2+bx+c中,若ac<0,则函数的零点个数是    个.
【答案】分析:有a•c<0,可得对应方程ax2+bx+c=0的△=b2-4ac>0,可得对应方程有两个不等实根,可得结论.
解答:解:∵ac<0,∴△=b2-4ac>0,
∴对应方程ax2+bx+c=0有两个不等实根,故所求二次函数与x轴有两个交点.
故答案为:2
点评:本题把二次函数与二次方程有机的结合了起来,有方程的根与函数零点的关系可知,求方程的根,就是确定函数的零点,也就是求函数的图象与x轴的交点的横坐标.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、二次函数y=ax2+bx+c中,a•c<0,则函数的零点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列变量之间是函数关系的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数y=ax2+4x-2有零点,则实数a的取值范围是
a≥-2
a≥-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设b>0,二次函数y=ax2+bx+a2-1的图象为下列图象之一:则a的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数y=ax2+bx+c(x∈R)的部分对应值如下表
x -3 -2 -1 0 1 2 3 4
y 6 0 -4 -6 -6 -4 0 6
(1)不等式ax2+bx+c>0的解集是多少?
(2)不等式cx2+bx+c>0的解集是多少?

查看答案和解析>>

同步练习册答案