精英家教网 > 高中数学 > 题目详情

【题目】2019年是中华人民共和国成立70周年,某校党支部举办了一场“我和我的祖国”知识竞赛,满分100分,回收40份答卷,成绩均落在区间内,将成绩绘制成如下的频率分布直方图.

1)估计知识竞赛成绩的中位数和平均数;

2)从分数段中,按分层抽样随机抽取5份答卷,再从对应的党员中选出3位党员参加县级交流会,求选出的3位党员中有2位成绩来自于分数段的概率.

【答案】(1)中位数为80.平均数为(2)

【解析】

(1)由频率分布直方图可知,利用中位数和平均数的计算公式,即可求解.

(2)由频率分布直方图可知,分别求得分数段中答卷数,利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解.

(1)由频率分布直方图可知,前3个小矩形的面积和为,后2个小矩形的面积和为,所以估计中位数为80.

估计平均数为.

(2)由频率分布直方图可知分数段中答卷数分别为12,8,

抽取比例为,所以分数段中抽取的答卷数分别为3,2.

中对应的3为党员为中对应的2为党员为.

则从中选出对应的3位党员,共有不同的选法总数10种:.

易知有2位来自于分数段的有3种,故所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中不正确的是( )

A. 平面平面,一条直线平行于平面,则一定平行于平面

B. 平面平面,则内的任意一条直线都平行于平面

C. 一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行

D. 分别在两个平行平面内的两条直线只能是平行直线或异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}共有5项,其中a1=0,a5=2,且|ai+1﹣ai|=1,i=1,2,3,4,则满足条件的不同数列的个数为(  )
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为某旅游区各景点的分布图,图中一条带箭头的线段表示一段有方向的路,试计算顺着箭头方向,从A到H不同的旅游路线的条数,这个数是(  )

A. 15 B. 16 C. 17 D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市出租车的计价标准是:4km以内(含4km10元,超过4km且不超过18km的部分1.2/km,超过18km的部分1.8/km,不计等待时间的费用.

1)如果某人乘车行驶了10km,他要付多少车费?

2)试建立车费y(元)与行车里程xkm)的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形中, ,将沿折起,使得平面平面,如图.

(1)求证:

(2)若中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.

(1)写出图(1)表示的市场售价与时间的函数关系式写出图(2)表示的种植成本与时间的函数关系式

(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/kg,时间单位:天.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1 , CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案