精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A、B、C所对的边分别为a、b、c,已知a≠b,cos2A﹣cos2B= sinAcosA﹣ sinBcosB. (Ⅰ)求角C的大小;
(Ⅱ)若c= ,siniA= ,求△ABC的面积.

【答案】解:(Ⅰ)∵cos2A﹣cos2B= sinAcosA﹣ sinBcosB. ∴ = sin2A﹣ sin2B,…2分
可得:cos2A﹣cos2B= sin2A﹣ sin2B,可得:sin(2A﹣ )=sin(2B﹣ ),…4分
∵△ABC中,a≠b,可得A≠B,
∴2A﹣ +2B﹣ =π,
∴A+B= ,可得:C= …6分
(Ⅱ)由(Ⅰ)可得,A+B=
∵sinA= ,可得:A= ,B= ,…8分
∴sin =sin( + )= ,…10分
∵c= ,由正弦定理 ,可得:a= ,…11分
∴S△ABC= acsinB= …12分
(注:解法较多,酌情给分,直接sin =sin75°= 的也给分)
【解析】(Ⅰ)利用三角函数恒等变换的应用化简已知等式可得sin(2A﹣ )=sin(2B﹣ ),由A≠B,可得2A﹣ +2B﹣ =π,进而可求C的值.(Ⅱ)由(Ⅰ)可得,A+B= ,结合sinA= ,可得A,B的值,求得sin 的值,利用正弦定理可求a,进而利用三角形面积公式即可计算得解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中正确的命题个数是( )

. 如果共面, 也共面,共面;

.已知直线a的方向向量与平面,若// ,则直线a// ;

③若共面,则存在唯一实数使,反之也成立;

.对空间任意点O与不共线的三点ABC,若=x+y+z

(其中xyz∈R),则PABC四点共面.

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P-ABCD中,AD⊥面PABBC⊥面PAB,底面ABCD为梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,满足上述条件的四棱锥的顶点P的轨迹是(  )

A. 圆的一部分 B. 椭圆的一部分

C. 球的一部分 D. 抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=log2x+a).

(Ⅰ)当a=1时,若fx)+fx-1)>0成立,求x的取值范围;

(Ⅱ)若定义在R上奇函数gx)满足gx+2)=-gx),且当0≤x≤1时,gx)=fx),求gx)在[-3,-1]上的解析式,并写出gx)在[-3,3]上的单调区间(不必证明);

(Ⅲ)对于(Ⅱ)中的gx),若关于x的不等式g)≥g(-)在R上恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业需要建造一个容积为8立方米,深度为2米的无盖长方体水池,已知池壁的造价为每平方米100元,池底造价为每平方米300元,设水池底面一边长为米,水池总造价为元,求关于的函数关系式,并求出水池的最低造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,E、F分别为PC、BD的中点,侧面PAD⊥底面ABCD.

(1)求证:EF∥平面PAD;

(2)若EF⊥PC,求证:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查每天人们使用手机的时间,我校某课外兴趣小组在天府广场随机采访男性、女性用户各50 名,其中每天玩手机超过6小时的用户列为“手机控”,否则称其为“非手机控”,调查结果如下:

手机控

非手机控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100


(1)根据以上数据,能否有60%的把握认为“手机控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取5人中“手机控”和“非手机控”的人数;
(3)从(2)中抽取的5人中再随机抽取3人,记这3人中“手机控”的人数为X,试求X的分布列与数学期望. 参考公式:
参考数据:

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.456[

0.708

1.321

3.840

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为为参数).以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,直线的极坐标方程为

(1)当时,判断直线与圆的关系

2)当上有且只有一点到直线的距离等于时,求上到直线距离为的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据市场调查发现,某种产品在投放市场的30天中,其销售价格(元)和时间(天)的关系如图所示.

(1)求销售价格(元)和时间(天)的函数关系式;

(2)若日销售量(件)与时间(天)的函数关系式是 ,问该产品投放市场第几天时,日销售额(元)最高,且最高为多少元?

查看答案和解析>>

同步练习册答案