精英家教网 > 高中数学 > 题目详情
已知奇函数f(x),偶函数g(x)满足f(x)+g(x)=ax(a>0且a≠1).
(1)求证:f(2x)=2f(x)g(x);
(2)设f(x)的反函数f-1(x),当a=
2
-1
时,比较f-1[g(x)]与-1的大小,证明你的结论;
(3)若a>1,n∈N*,且n≥2,比较f(n)与nf(1)的大小,并证明你的结论.
查看本题解析需要登录
查看解析如何获取优点?普通用户:2个优点。
如何申请VIP用户?VIP用户:请直接登录即可查看。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)为R上的减函数,则关于a的不等式f(a2)+f(2a)>0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)=lg
1-x1+x
,判断f(x)的奇偶性
(2)已知奇函数f(x)的定义域为R,x∈(-∞,0)时,f(x)=-x2-x-1,求f(x)解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个命题:
①已知函数f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一组数据18,21,19,a,22的平均数是20,那么这组数据的方差是2;
③要得到函数y=sin(2x+
π
3
)
的图象,只要将y=sin2x的图象向左平移
π
3
单位;
④已知奇函数f(x)在(0,+∞)为增函数,且f(-1)=0,则不等式f(x)<0的解集{x|x<-1}.
其中正确的是

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为R,且f(x)是以2为周期的周期函数,数列{an}是首项为1,公差为1的等差数列,则f(a1)+f(a2)+…+f(a2008)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)满足f(x)=-f(x+2),当x∈[0,1]时,f(x)=x,若af2(x)+bf(x)+c=0在x∈[0,6]上恰有5个根,且记为xi(i=1,2,3,4,5),则x1+x2+x3+x4+x5=
 

查看答案和解析>>

同步练习册答案