精英家教网 > 高中数学 > 题目详情
9.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是(  )
A.至少有一个白球;至少有一个红球B.至少有一个白球;红、黑球各一个
C.恰有一个白球;一个白球一个黑球D.至少有一个白球;都是白球

分析 利用互斥事件、对立事件的定义直接求解.

解答 解:袋中装有红球3个、白球2个、黑球1个,从中任取2个,
在A中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故A不成立;
在B中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,
是互斥而不对立的两个事件,故B成立;
在C中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故C不成立;
在D中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故D不成立.
故选:B.

点评 本题考查互斥而不对立事件的判断,是基础题,解题时要认真审题,注意互斥事件、对立事件的定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知命题P:函数y=lg(ax2+2x+1)的定义域为R;命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立.若P∨Q是真命题,P∧Q是假命题;求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在圆的方程x2+y2+Dx+Ey+F=0中,若D2=E2>4F,则圆的位置满足(  )
A.截两坐标轴所得弦的长度相等B.与两坐标轴都相切
C.与两坐标轴相离D.上述情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知随机变量ξ~B(n,p),若$E(ξ)=\frac{5}{3}$,$D(ξ)=\frac{10}{9}$,则n=5,p=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如下的对应数据:
使用年数246810
售价16139.574.5
(1)若这两个变量呈线性相关关系,试求y关于x的回归直线方程$\hat y=\hat bx+\hat a$;
(2)已知小王只收购使用年限不超过10年的二手车,且每辆该型号汽车的收购价格为ω=0.03x2-1.81x+16.2万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润L(x)最大?
(销售一辆该型号汽车的利润=销售价格-收购价格)
参考公式:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校高二年级在一次数学测验后,随机抽取了部分学生的数学成绩组成一个样本,得到如下频率分布直方图:
(1)求a及这部分学生成绩的样本平均数$\overline x$(同一组数据用该组的中点值作为代表);
(2)若该校高二共有1000名学生,试估计这次测验中,成绩在105分以上的学生人数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线$\sqrt{7}$x-$\sqrt{5}$y+12=0相切.求椭圆C的方程;
(2)已知⊙A1:(x+2)2+y2=12和点A2(2,0),求过点A2且与⊙A1相切的动圆圆心P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a=cos61°•cos127°+cos29°•cos37°,$b=\frac{{2tan{{13}°}}}{{1+{{tan}^2}{{13}°}}}$,$c=\sqrt{\frac{{1-cos{{50}°}}}{2}}$,则a,b,c的大小关系是(  )
A.a<b<cB.a>b>cC.c>a>bD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设F1、F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,P是双曲线C的右支上的点,射线PQ平分∠F1PF2交x轴于点Q,过原点O作PQ的平行线交PF1于点M,若|MP|=$\frac{1}{4}$|F1F2|,则C的离心率为(  )
A.$\frac{3}{2}$B.3C.2D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案