精英家教网 > 高中数学 > 题目详情
某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品.
(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P、P
产品\概率\工序 第一工序 第二工序
0.8 0.85
0.75 0.8
(Ⅱ)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(I)的条件下,求ξ、η的分布列及Eξ、Eη;
产品\利润\等级 一等 二等
5(万元) 2.5(万元)
2.5(万元) 1.5(万元)
(Ⅲ)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人40名,可用资金60万元.设x、y分别表示生产甲、乙产品的数量,在(II)的条件下,x、y为何值时,z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)
产品\用量\项目 工人(名) 资金(万元)
8 5
2 10
分析:这是一道概率,分布列、数学期望与线性规划的综合问题,(1)根据两道工序的加工结果都为A级时,产品为一等品,故生产出的甲、乙产品为一等品的概率P、P就是求甲乙两种产品的两道工序的加工结果都为A级的概率.(2)我们要根据题目已知,分别求出随机变量ξ、η的取值,并分析每总取值的概率,即可得到随机变量ξ、η的分布列,进而求出各自的数学期望.(3)由(2)的结论,我们不难得到x,y满足的不等关系,即约束条件,和目标函数,用线性规划的方法解决问题.
解答:精英家教网解:(Ⅰ)P=0.8×0.85=0.68,P=0.75×0.8=0.6.
(Ⅱ)随机变量ξ、η的分别列是
精英家教网
Eξ=5×0.68+2.5×0.32=4.2,Eη=2.5×0.6+1.5×0.4=2.1.
(Ⅲ)由题设知
5x+10y≤60
8x+2y≤40
x≥0
y≥0.

目标函数为z=xEξ+yEη=4.2x+2.1y.
作出可行域(如图):
作直线l:4.2x+2.1y=0,
将l向右上方平移至l1位置时,直线经过可行域上的点M点与原点距离最大,
此时z=4.2x+2.1y
取最大值.解方程组
5x+10y=60
8x+2y=40.

得x=4,y=4.即x=4,y=4时,z取最大值,z的最大值为25.2.
点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各种产品相互独立.
(1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;
(2)求生产4件甲产品所获得的利润不少于10万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

18、某工厂生产甲、乙两种产品,每种产品都是经过第一道和第二道工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级,对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品
(1)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产的甲、乙产品为一等品的概率P、P
(2)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(1)的条件下,分别求甲、乙两种产品利润的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产甲、乙两种产品.已知生产一吨甲产品、一吨乙产品所需要的煤、电以及产值如表所示;
用煤(吨) 用电(千瓦) 产值(万元)
生产一吨甲种产品 7 2 8
生产一吨乙种产品 3 5 11
又知道国家每天分配给该厂的煤和电力有限制,每天供煤至多56吨,供电至多45千瓦.问该厂如何安排生产,才能使该厂日产值最大?最大的产值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产甲、乙两种产品,这两种产品每千克的产值分别为600元和400元,已知每生产1千克甲产品需要A种原料4千克,B种原料2千克;每生产1千克乙产品需要A种原料2千克,B种原料3千克.但该厂现有A种原料100千克,B种原料120千克.问如何安排生产可以取得最大产值,并求出最大产值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产甲、乙两种产品,已知生产每吨甲产品所需电力4千瓦时、劳力6个,获得利润5百元;生产每吨乙产品所需电力5千瓦时、劳力4个,获得利润4百元;每天资源限额(最大供应量)分别为电力202千瓦时、劳动力240个.
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?最大利润是多少?

查看答案和解析>>

同步练习册答案