精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥 中, 平面

(1)求证: 平面
(2)求证:平面 平面
(3)设点 中点,在棱 上是否存在点 ,使得 ∥平面 ?说明理由.

【答案】
(1)证明: 平面 平面

,且 平面


(2)证明: 平面 ,且 平面

平面 平面 平面


(3)解:取 中点 ,连结 ,则 ∥平面 .

, 分别为 中点,则 ,又 平面

平面 ,所以 ∥平面


【解析】(1)由已知结合线面垂直的性质定理即可得出线线垂直再利用线面垂直的判定定理即可得出结论。(2)利用已知条件得出线面垂直再由平行关系的传递性得到A B ⊥ 平面 P A C ,根据面面垂直的判定定理即可得证。(3)根据题意作出辅助线由线面平行得出线线平行,再利用平行的传递性即可得证。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给定两个命题p:函数y=x2+8ax+1在[﹣1,1]上单调递增;q:方程 =1表示双曲线,如果命题“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】
(1)已知点M(1,-3),N(1,2),P(5,y),且∠NMP=90°,则log8(7+y)=.
(2)若把本题中“∠NMP=90°”改为“log8(7+y)= ”,其他条件不变,则∠NMP=.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的倾斜角为135°,直线l1经过点A(3,2),B(a , -1),且l1l垂直,直线l2:2xby+1=0与直线l1平行,则ab等于( )
A.-4
B.-2
C.0
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:

(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是单调递增的等差数列,首项 ,前 项和为 ,数列 是等比数列,首项 ,且 .
(1)求数列 的通项公式;
(2)设 ,求数列 的前 项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在 中, ,点 边上,且

(I)求
(II)求 的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD= ,AA1=3,E为CD上一点,DE=1,EC=3
(1)证明:BE⊥平面BB1C1C;
(2)求三棱锥B1﹣EA1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对100名六年级学生进行了问卷调查得到如图联表.且平均每天喝500ml以上为常喝,体重超过50kg为肥胖.已知在全部100人中随机抽取1人,抽到肥胖的学生的概率为0.8.

常喝

不常喝

合计

肥胖

60

不肥胖

10

合计

100


(1)求肥胖学生的人数并将上面的列联表补充完整;
(2)是否有95%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由. 附:参考公式:x2=

P(x2≥x0

0.05

0.025

0.010

0.005

0.001

x0

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案