解:(1)由正弦定理得:
=
=
=2R,
∴a=2RsinA,b=2RsinB,c=2RsinC,
代入已知的等式得:
,
化简得:2sinAcosB+sinCcosB+cosCsinB
=2sinAcosB+sin(C+B)=2sinAcosB+sinA=sinA(2cosB+1)=0,
又A为三角形的内角,得出sinA≠0,
∴2cosB+1=0,即cosB=-
,
∵B为三角形的内角,∴
;
(2)∵a=4,sinB=
,S=5
,
∴S=
acsinB=
×4c×
=5
,
解得c=5,又cosB=-
,a=4,
根据余弦定理得:
b
2=a
2+c
2-2ac•cosB=16+25+20=61,
解得b=
.
分析:(1)根据正弦定理化简已知的等式,然后再利用两角和与差的正弦函数公式及诱导公式变形,提取sinA,可得sinA与1+2sinB至少有一个为0,又A为三角形的内角,故sinA不可能为0,进而求出sinB的值,由B的范围,利用特殊角的三角函数值即可求出B的度数;
(2)由第一问求出的B的度数求出sinB和cosB的值,再由a的值及S的值,代入三角形的面积公式求出c的值,然后再由cosB的值,以及a与c的值,利用余弦定理即可求出b的值.
点评:此题考查了正弦、余弦定理,以及三角形的面积公式,考查了两角和与差的正弦函数公式及诱导公式,其中熟练掌握公式及定理,牢记特殊角的三角函数值是解本题的关键.